test_feature_extraction_common.py 8.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
19
import sys
20
import tempfile
21
import unittest
22
import unittest.mock as mock
23
from pathlib import Path
24

25
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
26
from requests.exceptions import HTTPError
27
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
28
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
29
from transformers.utils import is_torch_available, is_vision_available
30
31
32
33
34


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
NielsRogge's avatar
NielsRogge committed
35
36
37
38
39
40
41
42
43


if is_torch_available():
    import numpy as np
    import torch

if is_vision_available():
    from PIL import Image

44

Yih-Dar's avatar
Yih-Dar committed
45
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
46
47


NielsRogge's avatar
NielsRogge committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
    """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
    or a list of PyTorch tensors if one specifies torchify=True.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    if equal_resolution:
        image_inputs = []
        for i in range(feature_extract_tester.batch_size):
            image_inputs.append(
                np.random.randint(
                    255,
                    size=(
                        feature_extract_tester.num_channels,
                        feature_extract_tester.max_resolution,
                        feature_extract_tester.max_resolution,
                    ),
                    dtype=np.uint8,
                )
            )
    else:
        image_inputs = []
71
72
73
74
75
76
77

        # To avoid getting image width/height 0
        min_resolution = feature_extract_tester.min_resolution
        if getattr(feature_extract_tester, "size_divisor", None):
            # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
            min_resolution = max(feature_extract_tester.size_divisor, min_resolution)

NielsRogge's avatar
NielsRogge committed
78
        for i in range(feature_extract_tester.batch_size):
79
            width, height = np.random.choice(np.arange(min_resolution, feature_extract_tester.max_resolution), 2)
NielsRogge's avatar
NielsRogge committed
80
81
82
83
84
85
86
87
88
89
90
91
92
            image_inputs.append(
                np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8)
            )

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

    if torchify:
        image_inputs = [torch.from_numpy(x) for x in image_inputs]

    return image_inputs

93

94
class FeatureExtractionSavingTestMixin:
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
115
116
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
117
118
119
120
121
122
123
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_init_without_params(self):
        feat_extract = self.feature_extraction_class()
        self.assertIsNotNone(feat_extract)
124
125


126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class FeatureExtractorUtilTester(unittest.TestCase):
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
            # This check we did call the fake head request
            mock_head.assert_called()


143
@is_staging_test
144
class FeatureExtractorPushToHubTester(unittest.TestCase):
145
146
    @classmethod
    def setUpClass(cls):
147
148
149
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
150
151
152

    @classmethod
    def tearDownClass(cls):
153
        try:
154
            delete_repo(token=cls._token, repo_id="test-feature-extractor")
155
156
157
158
        except HTTPError:
            pass

        try:
159
            delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
160
161
162
        except HTTPError:
            pass

163
        try:
164
            delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
165
166
167
        except HTTPError:
            pass

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def test_push_to_hub(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
                os.path.join(tmp_dir, "test-feature-extractor"), push_to_hub=True, use_auth_token=self._token
            )

            new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
            for k, v in feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_feature_extractor, k))

    def test_push_to_hub_in_organization(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
                os.path.join(tmp_dir, "test-feature-extractor-org"),
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
            for k, v in feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_feature_extractor, k))

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def test_push_to_hub_dynamic_feature_extractor(self):
        CustomFeatureExtractor.register_for_auto_class()
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-feature-extractor", use_auth_token=self._token)
            feature_extractor.save_pretrained(tmp_dir)

            # This has added the proper auto_map field to the config
            self.assertDictEqual(
                feature_extractor.auto_map,
                {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
            )
            # The code has been copied from fixtures
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))

            repo.push_to_hub()

        new_feature_extractor = AutoFeatureExtractor.from_pretrained(
            f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
        )
        # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
        self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")