test_feature_extraction_common.py 5.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
19
import sys
20
import tempfile
21
22
import unittest
from pathlib import Path
23

24
25
26
from huggingface_hub import Repository, delete_repo, login
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor
NielsRogge's avatar
NielsRogge committed
27
from transformers.file_utils import is_torch_available, is_vision_available
28
29
30
31
32
33
from transformers.testing_utils import PASS, USER, is_staging_test


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
NielsRogge's avatar
NielsRogge committed
34
35
36
37
38
39
40
41
42
43


if is_torch_available():
    import numpy as np
    import torch

if is_vision_available():
    from PIL import Image


44
45
46
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures")


NielsRogge's avatar
NielsRogge committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
    """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
    or a list of PyTorch tensors if one specifies torchify=True.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    if equal_resolution:
        image_inputs = []
        for i in range(feature_extract_tester.batch_size):
            image_inputs.append(
                np.random.randint(
                    255,
                    size=(
                        feature_extract_tester.num_channels,
                        feature_extract_tester.max_resolution,
                        feature_extract_tester.max_resolution,
                    ),
                    dtype=np.uint8,
                )
            )
    else:
        image_inputs = []
        for i in range(feature_extract_tester.batch_size):
            width, height = np.random.choice(
                np.arange(feature_extract_tester.min_resolution, feature_extract_tester.max_resolution), 2
            )
            image_inputs.append(
                np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8)
            )

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

    if torchify:
        image_inputs = [torch.from_numpy(x) for x in image_inputs]

    return image_inputs

87

88
class FeatureExtractionSavingTestMixin:
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            feat_extract_first.save_pretrained(tmpdirname)
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_init_without_params(self):
        feat_extract = self.feature_extraction_class()
        self.assertIsNotNone(feat_extract)
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154


@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, name="test-dynamic-feature-extractor")
        except HTTPError:
            pass

    def test_push_to_hub_dynamic_feature_extractor(self):
        CustomFeatureExtractor.register_for_auto_class()
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-feature-extractor", use_auth_token=self._token)
            feature_extractor.save_pretrained(tmp_dir)

            # This has added the proper auto_map field to the config
            self.assertDictEqual(
                feature_extractor.auto_map,
                {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
            )
            # The code has been copied from fixtures
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))

            repo.push_to_hub()

        new_feature_extractor = AutoFeatureExtractor.from_pretrained(
            f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
        )
        # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
        self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")