modeling_bert.py 58.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

31
32
33
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_bert import BertConfig
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
34
35
36

logger = logging.getLogger(__name__)

37
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
38
39
40
41
42
43
44
45
46
47
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
49
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
50
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
51
}
52

53
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
54
    """ Load tf checkpoints in a pytorch model.
55
    """
56
57
58
59
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
60
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
61
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
62
63
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
64
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
65
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
66
67
68
69
70
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
71
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
72
73
74
75
76
77
78
79
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
80
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
81
            logger.info("Skipping {}".format("/".join(name)))
82
83
84
85
86
87
88
89
90
91
92
93
94
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
95
96
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
97
            else:
98
99
100
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
101
                    logger.info("Skipping {}".format("/".join(name)))
102
                    continue
103
104
105
106
107
108
109
110
111
112
113
114
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
115
        logger.info("Initialize PyTorch weight {}".format(name))
116
117
118
119
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
120
def gelu(x):
thomwolf's avatar
thomwolf committed
121
    """ Original Implementation of the gelu activation function in Google Bert repo when initialy created.
thomwolf's avatar
thomwolf committed
122
123
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
124
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
125
126
127
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))

thomwolf's avatar
thomwolf committed
128
129
130
131
132
def gelu_new(x):
    """ Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
        Also see https://arxiv.org/abs/1606.08415
    """
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
thomwolf's avatar
thomwolf committed
133
134
135
136
137

def swish(x):
    return x * torch.sigmoid(x)


thomwolf's avatar
thomwolf committed
138
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new}
thomwolf's avatar
thomwolf committed
139
140


141
142
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
雷打不动!'s avatar
雷打不动! committed
143
except (ImportError, AttributeError) as e:
144
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
145
    BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
146
147
148
149
150
151

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
152
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
153
154
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
155
156
157

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
158
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
159
160
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

thomwolf's avatar
thomwolf committed
161
    def forward(self, input_ids, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
162
        seq_length = input_ids.size(1)
thomwolf's avatar
thomwolf committed
163
164
165
        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
180
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
181
182
183
184
185
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
186
        self.output_attentions = config.output_attentions
187

thomwolf's avatar
thomwolf committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

thomwolf's avatar
thomwolf committed
203
    def forward(self, hidden_states, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
204
205
206
207
208
209
210
211
212
213
214
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
thomwolf's avatar
thomwolf committed
215
216
217
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask
thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
224
225

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

226
227
228
229
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
230
        context_layer = torch.matmul(attention_probs, value_layer)
231

thomwolf's avatar
thomwolf committed
232
233
234
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
235

236
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
237
        return outputs
thomwolf's avatar
thomwolf committed
238
239
240
241
242
243


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
244
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
251
252
253
254
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
255
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
256
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
257
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
258
        self.output = BertSelfOutput(config)
259
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
260

thomwolf's avatar
thomwolf committed
261
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
262
263
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
264
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
265
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
thomwolf's avatar
thomwolf committed
266
        for head in heads:
267
268
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
269
270
271
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
272

thomwolf's avatar
thomwolf committed
273
274
275
276
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
277
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
278
279

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
280
281
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
282
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
283

thomwolf's avatar
thomwolf committed
284
    def forward(self, input_tensor, attention_mask=None, head_mask=None):
285
286
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
287
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
288
        return outputs
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
295
296
297
298
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
299
300
301
302
303
304
305
306
307
308
309

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
310
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
321
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
322
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
323
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
324
325
326
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

thomwolf's avatar
thomwolf committed
327
    def forward(self, hidden_states, attention_mask=None, head_mask=None):
328
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
329
330
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
331
        layer_output = self.output(intermediate_output, attention_output)
332
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
333
        return outputs
thomwolf's avatar
thomwolf committed
334
335
336


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
337
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
338
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
339
340
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
341
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
342

thomwolf's avatar
thomwolf committed
343
    def forward(self, hidden_states, attention_mask=None, head_mask=None):
344
345
        all_hidden_states = ()
        all_attentions = ()
346
        for i, layer_module in enumerate(self.layer):
347
            if self.output_hidden_states:
348
                all_hidden_states = all_hidden_states + (hidden_states,)
349
350
351
352

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
353
            if self.output_attentions:
354
                all_attentions = all_attentions + (layer_outputs[1],)
355
356
357

        # Add last layer
        if self.output_hidden_states:
358
            all_hidden_states = all_hidden_states + (hidden_states,)
359

360
        outputs = (hidden_states,)
361
        if self.output_hidden_states:
362
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
363
        if self.output_attentions:
364
            outputs = outputs + (all_attentions,)
365
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
387
388
389
390
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
391
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
399
400

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
401
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
402
403
404
405
406
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
407
408
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
409
                                 bias=False)
410

thomwolf's avatar
thomwolf committed
411
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
412
413
414
415
416
417
418
419

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
420
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
421
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
422
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
440
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
441
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
442
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
443
444
445
446
447
448
449
450
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


451
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
452
453
454
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
455
    config_class = BertConfig
456
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
457
458
459
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

460
461
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
462
463
464
465
466
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
467
468
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
469
470
471
472
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
473
474
475
476
477
BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.
478

thomwolf's avatar
thomwolf committed
479
480
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
481

thomwolf's avatar
thomwolf committed
482
483
    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805
thomwolf's avatar
thomwolf committed
484

thomwolf's avatar
thomwolf committed
485
486
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
487

thomwolf's avatar
thomwolf committed
488
    Parameters:
489
490
491
        config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. 
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``
thomwolf's avatar
thomwolf committed
511
512
513
514

            Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

thomwolf's avatar
thomwolf committed
515
516
517
            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
518
519
520
521
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
522
523
524
525
526
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
527
528
529
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
530
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
531
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
532
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
533
534
535
536
537
538
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertModel(BertPreTrainedModel):
539
    r"""
thomwolf's avatar
thomwolf committed
540
541
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
thomwolf's avatar
thomwolf committed
542
543
544
545
546
547
548
549
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
thomwolf's avatar
thomwolf committed
550
551
552
553
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
554
555
556
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
557
558
559

    Examples::

wangfei's avatar
wangfei committed
560
561
562
563
564
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
565
566

    """
thomwolf's avatar
thomwolf committed
567
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
568
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
569

thomwolf's avatar
thomwolf committed
570
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
571
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
572
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
573

574
        self.init_weights()
thomwolf's avatar
thomwolf committed
575

thomwolf's avatar
thomwolf committed
576
577
578
579
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
thomwolf's avatar
thomwolf committed
580
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
581

thomwolf's avatar
thomwolf committed
582
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
583
584
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
585
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
586
587
588
589
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

590
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
611
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
612
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
613
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
614
615
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
616
617
        if head_mask is not None:
            if head_mask.dim() == 1:
618
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
619
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
620
            elif head_mask.dim() == 2:
621
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
622
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
623
624
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
625

thomwolf's avatar
thomwolf committed
626
        embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
627
628
629
630
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
631
        pooled_output = self.pooler(sequence_output)
632

633
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
634
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
635
636


thomwolf's avatar
thomwolf committed
637
@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
thomwolf's avatar
thomwolf committed
638
639
    a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
640
class BertForPreTraining(BertPreTrainedModel):
641
    r"""
thomwolf's avatar
thomwolf committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
664
665
666
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
667
668
669

    Examples::

wangfei's avatar
wangfei committed
670
671
672
673
674
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForPreTraining.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, seq_relationship_scores = outputs[:2]
675

thomwolf's avatar
thomwolf committed
676
    """
thomwolf's avatar
thomwolf committed
677
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
678
        super(BertForPreTraining, self).__init__(config)
679

thomwolf's avatar
thomwolf committed
680
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
681
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
682

683
        self.init_weights()
thomwolf's avatar
thomwolf committed
684
685
686
687
688
689
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
690
691
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
692

693
694
695
696
697
698
699
700
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                masked_lm_labels=None, next_sentence_label=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)
701
702

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
703
704
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

705
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
706

thomwolf's avatar
thomwolf committed
707
708
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
709
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
710
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
711
            total_loss = masked_lm_loss + next_sentence_loss
712
            outputs = (total_loss,) + outputs
713
714

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
715
716


thomwolf's avatar
thomwolf committed
717
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
thomwolf's avatar
thomwolf committed
718
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
719
class BertForMaskedLM(BertPreTrainedModel):
720
    r"""
thomwolf's avatar
thomwolf committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
736
737
738
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
739
740
741

    Examples::

wangfei's avatar
wangfei committed
742
743
744
745
746
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMaskedLM.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
747

thomwolf's avatar
thomwolf committed
748
    """
thomwolf's avatar
thomwolf committed
749
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
750
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
751

thomwolf's avatar
thomwolf committed
752
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
753
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
754

755
        self.init_weights()
thomwolf's avatar
thomwolf committed
756
757
758
759
760
761
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
762
763
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
764

765
766
767
768
769
770
771
772
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                masked_lm_labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)
thomwolf's avatar
thomwolf committed
773
774

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
775
776
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
777
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
778
779
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
780
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
781
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
782
783

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
784
785


thomwolf's avatar
thomwolf committed
786
@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
thomwolf's avatar
thomwolf committed
787
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
788
class BertForNextSentencePrediction(BertPreTrainedModel):
789
    r"""
thomwolf's avatar
thomwolf committed
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Next sequence prediction (classification) loss.
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
805
806
807
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
808
809
810

    Examples::

wangfei's avatar
wangfei committed
811
812
813
814
815
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        seq_relationship_scores = outputs[0]
816

thomwolf's avatar
thomwolf committed
817
    """
thomwolf's avatar
thomwolf committed
818
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
819
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
820

thomwolf's avatar
thomwolf committed
821
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
822
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
823

824
        self.init_weights()
thomwolf's avatar
thomwolf committed
825

826
827
828
829
830
831
832
833
834
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                next_sentence_label=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
835
836
        pooled_output = outputs[1]

837
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
838

839
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
840
841
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
842
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
843
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
844
845

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
846
847


thomwolf's avatar
thomwolf committed
848
@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
849
850
    the pooled output) e.g. for GLUE tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
851
class BertForSequenceClassification(BertPreTrainedModel):
852
    r"""
thomwolf's avatar
thomwolf committed
853
854
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
855
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
856
857
858
859
860
861
862
863
864
865
866
867
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
868
869
870
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
871
872
873

    Examples::

wangfei's avatar
wangfei committed
874
875
876
877
878
879
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
880

thomwolf's avatar
thomwolf committed
881
    """
thomwolf's avatar
thomwolf committed
882
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
883
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
884
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
885

thomwolf's avatar
thomwolf committed
886
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
887
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
888
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
889

890
        self.init_weights()
thomwolf's avatar
thomwolf committed
891

892
893
894
895
896
897
898
899
900
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
901
902
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
903
904
905
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

906
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
907

thomwolf's avatar
thomwolf committed
908
        if labels is not None:
909
910
911
912
913
914
915
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
916
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
917
918

        return outputs  # (loss), logits, (hidden_states), (attentions)
919
920


thomwolf's avatar
thomwolf committed
921
@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
922
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
923
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
924
class BertForMultipleChoice(BertPreTrainedModel):
925
    r"""
thomwolf's avatar
thomwolf committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
941
942
943
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
944
945
946

    Examples::

wangfei's avatar
wangfei committed
947
948
949
950
951
952
953
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]
954

955
    """
thomwolf's avatar
thomwolf committed
956
    def __init__(self, config):
957
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
958

thomwolf's avatar
thomwolf committed
959
        self.bert = BertModel(config)
960
961
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
962

963
        self.init_weights()
964

965
966
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):
thomwolf's avatar
thomwolf committed
967
968
        num_choices = input_ids.shape[1]

969
970
971
972
973
974
975
976
977
978
979
        input_ids = input_ids.view(-1, input_ids.size(-1))
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids,
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
980
981
        pooled_output = outputs[1]

982
983
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
984
        reshaped_logits = logits.view(-1, num_choices)
985

986
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
987

988
989
990
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
991
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
992
993

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
994
995


thomwolf's avatar
thomwolf committed
996
@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
997
998
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
999
class BertForTokenClassification(BertPreTrainedModel):
1000
    r"""
thomwolf's avatar
thomwolf committed
1001
1002
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
LysandreJik's avatar
LysandreJik committed
1003
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1014
1015
1016
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1017
1018
1019

    Examples::

wangfei's avatar
wangfei committed
1020
1021
1022
1023
1024
1025
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]
1026

1027
    """
thomwolf's avatar
thomwolf committed
1028
    def __init__(self, config):
1029
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1030
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1031

thomwolf's avatar
thomwolf committed
1032
        self.bert = BertModel(config)
1033
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1034
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1035

1036
        self.init_weights()
1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1047
1048
        sequence_output = outputs[0]

1049
1050
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1051

1052
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1053
1054
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1055
1056
1057
1058
1059
1060
1061
1062
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1063
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1064

thomwolf's avatar
thomwolf committed
1065
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1066
1067


thomwolf's avatar
thomwolf committed
1068
@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
thomwolf's avatar
thomwolf committed
1069
1070
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1071
class BertForQuestionAnswering(BertPreTrainedModel):
1072
    r"""
thomwolf's avatar
thomwolf committed
1073
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1074
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1075
1076
1077
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1078
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1093
1094
1095
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1096
1097
1098

    Examples::

wangfei's avatar
wangfei committed
1099
1100
1101
1102
1103
1104
1105
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
1106

thomwolf's avatar
thomwolf committed
1107
    """
thomwolf's avatar
thomwolf committed
1108
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1109
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1110
1111
1112
1113
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1114

1115
        self.init_weights()
thomwolf's avatar
thomwolf committed
1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                start_positions=None, end_positions=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1126
1127
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1128
1129
1130
1131
1132
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1133
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1149
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1150
1151

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)