modeling_bert.py 65.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

thomwolf's avatar
thomwolf committed
31
32
from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel,
                             prune_linear_layer, add_start_docstrings)
thomwolf's avatar
thomwolf committed
33
34
35

logger = logging.getLogger(__name__)

36
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
37
38
39
40
41
42
43
44
45
46
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
47
48
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
49
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
50
}
51

52
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
53
54
55
56
57
58
59
60
61
62
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
63
64
65
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
66
67
}

thomwolf's avatar
thomwolf committed
68

69
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
70
    """ Load tf checkpoints in a pytorch model.
71
    """
72
73
74
75
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
76
    except ImportError:
thomwolf's avatar
thomwolf committed
77
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
78
79
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
80
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
81
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
82
83
84
85
86
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
87
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
88
89
90
91
92
93
94
95
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
96
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
97
            logger.info("Skipping {}".format("/".join(name)))
98
99
100
101
102
103
104
105
106
107
108
109
110
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
111
112
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
113
            else:
114
115
116
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
117
                    logger.info("Skipping {}".format("/".join(name)))
118
                    continue
119
120
121
122
123
124
125
126
127
128
129
130
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
131
        logger.info("Initialize PyTorch weight {}".format(name))
132
133
134
135
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
136
137
138
139
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
140
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147
148
149
150
151
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


152
class BertConfig(PretrainedConfig):
153
    r"""
154
        :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
155
        `BertModel`.
156

157
        Arguments:
thomwolf's avatar
thomwolf committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
178
            layer_norm_eps: The epsilon used by LayerNorm.
179
    """
thomwolf's avatar
thomwolf committed
180
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        """Constructs BertConfig.
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        Arguments:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
220
        """
thomwolf's avatar
thomwolf committed
221
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
222
223
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
224
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
240
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
241
242
243
244
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

245

246

247
248
249
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
250
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
265
266
267
268
269
270

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
271
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
272
273
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
274
275
276

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
277
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
298
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
299
300
301
302
303
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
304
        self.output_attentions = config.output_attentions
305

thomwolf's avatar
thomwolf committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

321
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

343
344
345
346
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
347
        context_layer = torch.matmul(attention_probs, value_layer)
348

thomwolf's avatar
thomwolf committed
349
350
351
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
352

353
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
354
        return outputs
thomwolf's avatar
thomwolf committed
355
356
357
358
359
360


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
361
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
362
363
364
365
366
367
368
369
370
371
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
372
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
373
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
374
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
375
376
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
377
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
378
379
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
380
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
381
382
383
384
385
386
387
388
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
389
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
390
391
392
393
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

394
    def forward(self, input_tensor, attention_mask, head_mask=None):
395
396
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
397
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
398
        return outputs
thomwolf's avatar
thomwolf committed
399
400
401
402
403
404


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
405
406
407
408
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
420
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
421
422
423
424
425
426
427
428
429
430
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
431
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
432
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
433
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
434
435
436
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

437
    def forward(self, hidden_states, attention_mask, head_mask=None):
438
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
439
440
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
441
        layer_output = self.output(intermediate_output, attention_output)
442
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
443
        return outputs
thomwolf's avatar
thomwolf committed
444
445
446


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
447
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
448
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
449
450
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
451
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
452

453
    def forward(self, hidden_states, attention_mask, head_mask=None):
454
455
        all_hidden_states = ()
        all_attentions = ()
456
        for i, layer_module in enumerate(self.layer):
457
            if self.output_hidden_states:
458
                all_hidden_states = all_hidden_states + (hidden_states,)
459
460
461
462

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
463
            if self.output_attentions:
464
                all_attentions = all_attentions + (layer_outputs[1],)
465
466
467

        # Add last layer
        if self.output_hidden_states:
468
            all_hidden_states = all_hidden_states + (hidden_states,)
469

470
        outputs = (hidden_states,)
471
        if self.output_hidden_states:
472
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
473
        if self.output_attentions:
474
            outputs = outputs + (all_attentions,)
475
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
497
498
499
500
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
501
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
511
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
512
513
514
515
516
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
517
518
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
519
                                 bias=False)
520

thomwolf's avatar
thomwolf committed
521
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
522
523
524
525
526
527
528
529

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
530
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
531
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
532
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
550
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
551
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
552
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
553
554
555
556
557
558
559
560
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


561
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
562
563
564
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
565
    config_class = BertConfig
566
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
567
568
569
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

570
571
572
    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
573
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
574
575
576
577
578
579
580
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
581
582
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
583
584
585
586
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
587
588
589
590
591
BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.
592

thomwolf's avatar
thomwolf committed
593
594
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
595

thomwolf's avatar
thomwolf committed
596
597
    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805
thomwolf's avatar
thomwolf committed
598

thomwolf's avatar
thomwolf committed
599
600
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
601

thomwolf's avatar
thomwolf committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    Parameters:
        config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model.
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``
    
            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
        **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask indices selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask indices selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
645
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> model = BertModel(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
        >>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
665
666

    """
thomwolf's avatar
thomwolf committed
667
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
668
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
669

thomwolf's avatar
thomwolf committed
670
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
671
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
672
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
673

thomwolf's avatar
thomwolf committed
674
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
675

thomwolf's avatar
thomwolf committed
676
677
678
679
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
thomwolf's avatar
thomwolf committed
680
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
681

thomwolf's avatar
thomwolf committed
682
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
683
684
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
685
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
686
687
688
689
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

690
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
711
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
712
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
713
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
714
715
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
716
717
        if head_mask is not None:
            if head_mask.dim() == 1:
718
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
719
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
720
            elif head_mask.dim() == 2:
721
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
722
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
723
724
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
725

thomwolf's avatar
thomwolf committed
726
        embedding_output = self.embeddings(input_ids, token_type_ids)
727
728
729
730
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
731
        pooled_output = self.pooler(sequence_output)
732

733
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
734
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
735
736


thomwolf's avatar
thomwolf committed
737
738
739
@add_start_docstrings("""Bert Model transformer BERT model with two heads on top as done during the pre-training:
    a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
740
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
741
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForPreTraining(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
        >>> prediction_scores, seq_relationship_scores = outputs[:1]
777

thomwolf's avatar
thomwolf committed
778
    """
thomwolf's avatar
thomwolf committed
779
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
780
        super(BertForPreTraining, self).__init__(config)
781

thomwolf's avatar
thomwolf committed
782
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
783
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
784

thomwolf's avatar
thomwolf committed
785
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
786
787
788
789
790
791
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
792
793
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
794

795
796
797
798
799
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
800
801
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

802
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
803

thomwolf's avatar
thomwolf committed
804
805
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
806
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
807
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
808
            total_loss = masked_lm_loss + next_sentence_loss
809
            outputs = (total_loss,) + outputs
810
811

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
812
813


thomwolf's avatar
thomwolf committed
814
815
@add_start_docstrings("""Bert Model transformer BERT model with a `language modeling` head on top. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
816
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
817
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForMaskedLM(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, masked_lm_labels=input_ids)
        >>> loss, prediction_scores = outputs[:1]
846

thomwolf's avatar
thomwolf committed
847
    """
thomwolf's avatar
thomwolf committed
848
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
849
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
850

thomwolf's avatar
thomwolf committed
851
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
852
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
853

thomwolf's avatar
thomwolf committed
854
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
855
856
857
858
859
860
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
861
862
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
863

864
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
865
866
867
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
868
869
        prediction_scores = self.cls(sequence_output)

870
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
871
872
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
873
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
874
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
875
876

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
877
878


thomwolf's avatar
thomwolf committed
879
880
@add_start_docstrings("""Bert Model transformer BERT model with a `next sentence prediction (classification)` head on top. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
881
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
882
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Next sequence prediction (classification) loss.
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForNextSentencePrediction(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
        >>> seq_relationship_scores = outputs[0]
911

thomwolf's avatar
thomwolf committed
912
    """
thomwolf's avatar
thomwolf committed
913
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
914
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
915

thomwolf's avatar
thomwolf committed
916
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
917
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
918

thomwolf's avatar
thomwolf committed
919
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
920

921
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
thomwolf's avatar
thomwolf committed
922
923
924
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

925
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
926

927
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
928
929
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
930
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
931
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
932
933

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
934
935


thomwolf's avatar
thomwolf committed
936
937
938
@add_start_docstrings("""Bert Model transformer BERT model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
939
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
940
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForSequenceClassification(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, labels=labels)
        >>> loss, logits = outputs[:1]
970

thomwolf's avatar
thomwolf committed
971
    """
thomwolf's avatar
thomwolf committed
972
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
973
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
974
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
975

thomwolf's avatar
thomwolf committed
976
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
977
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
978
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
979

thomwolf's avatar
thomwolf committed
980
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
981

982
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
983
984
985
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
986
987
988
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

989
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
990

thomwolf's avatar
thomwolf committed
991
        if labels is not None:
992
993
994
995
996
997
998
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
999
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1000
1001

        return outputs  # (loss), logits, (hidden_states), (attentions)
1002
1003


thomwolf's avatar
thomwolf committed
1004
1005
1006
@add_start_docstrings("""Bert Model transformer BERT model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    BERT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
1007
class BertForMultipleChoice(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1008
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``
    
            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
        **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Mask indices selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask indices selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForMultipleChoice(config)
        >>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        >>> labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, labels=labels)
        >>> loss, classification_scores = outputs[:1]
1075

1076
    """
thomwolf's avatar
thomwolf committed
1077
    def __init__(self, config):
1078
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1079

thomwolf's avatar
thomwolf committed
1080
        self.bert = BertModel(config)
1081
1082
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1083

thomwolf's avatar
thomwolf committed
1084
        self.apply(self.init_weights)
1085

1086
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1087
1088
        num_choices = input_ids.shape[1]

1089
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1090
1091
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1092
1093
1094
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1095
1096
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1097
        reshaped_logits = logits.view(-1, num_choices)
1098

1099
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1100

1101
1102
1103
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1104
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1105
1106

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1107
1108


thomwolf's avatar
thomwolf committed
1109
1110
1111
@add_start_docstrings("""Bert Model transformer BERT model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1112
class BertForTokenClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1113
    __doc__ = r"""
thomwolf's avatar
thomwolf committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels]``.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForTokenClassification(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, labels=labels)
        >>> loss, scores = outputs[:1]
1141

1142
    """
thomwolf's avatar
thomwolf committed
1143
    def __init__(self, config):
1144
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1145
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1146

thomwolf's avatar
thomwolf committed
1147
        self.bert = BertModel(config)
1148
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1149
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1150

thomwolf's avatar
thomwolf committed
1151
        self.apply(self.init_weights)
1152

1153
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1154
1155
1156
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1157
1158
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1159

1160
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1161
1162
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1163
1164
1165
1166
1167
1168
1169
1170
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1171
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1172

thomwolf's avatar
thomwolf committed
1173
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1174
1175


thomwolf's avatar
thomwolf committed
1176
1177
1178
@add_start_docstrings("""Bert Model transformer BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1179
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = BertConfig.from_pretrained('bert-base-uncased')
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> 
        >>> model = BertForQuestionAnswering(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])
        >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        >>> loss, start_scores, end_scores = outputs[:2]
1216

thomwolf's avatar
thomwolf committed
1217
    """
thomwolf's avatar
thomwolf committed
1218
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1219
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1220
1221
1222
1223
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1224

thomwolf's avatar
thomwolf committed
1225
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1226

thomwolf's avatar
thomwolf committed
1227
1228
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1229
1230
1231
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1232
1233
1234
1235
1236
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1237
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1253
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1254
1255

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)