modeling_bert.py 66.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

31
from .modeling_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
46
47
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
49
}
50

51
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
52
53
54
55
56
57
58
59
60
61
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
62
63
64
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
65
66
}

thomwolf's avatar
thomwolf committed
67

68
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
69
70
    """ Load tf checkpoints in a pytorch model
    """
71
72
73
74
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
75
    except ImportError:
76
77
78
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
95
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
110
111
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
112
            else:
113
114
115
116
117
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
135
136
137
138
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
139
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
148
149
150
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


151
class BertConfig(PretrainedConfig):
152
153
154
    r"""
        :class:`~pytorch_pretrained_bert.BertConfig` is the configuration class to store the configuration of a
        `BertModel`.
155

156
        Arguments:
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
177
            layer_norm_eps: The epsilon used by LayerNorm.
178
    """
thomwolf's avatar
thomwolf committed
179
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        """Constructs BertConfig.
thomwolf's avatar
thomwolf committed
196
        """
thomwolf's avatar
thomwolf committed
197
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
198
199
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
200
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
216
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
217
218
219
220
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

221

222
223
224
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
225
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
240
241
242
243
244
245

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
246
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
247
248
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
249
250
251

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
252
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
273
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
274
275
276
277
278
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
279
        self.output_attentions = config.output_attentions
280

thomwolf's avatar
thomwolf committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

296
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

318
319
320
321
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
322
        context_layer = torch.matmul(attention_probs, value_layer)
323

thomwolf's avatar
thomwolf committed
324
325
326
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
327

328
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
329
        return outputs
thomwolf's avatar
thomwolf committed
330
331
332
333
334
335


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
336
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
337
338
339
340
341
342
343
344
345
346
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
347
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
348
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
349
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
350
351
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
352
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
353
354
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
355
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
356
357
358
359
360
361
362
363
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
364
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
365
366
367
368
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

369
    def forward(self, input_tensor, attention_mask, head_mask=None):
370
371
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
372
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
373
        return outputs
thomwolf's avatar
thomwolf committed
374
375
376
377
378
379


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
380
381
382
383
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
384
385
386
387
388
389
390
391
392
393
394

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
395
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
406
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
407
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
408
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
409
410
411
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

412
    def forward(self, hidden_states, attention_mask, head_mask=None):
413
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
414
415
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
416
        layer_output = self.output(intermediate_output, attention_output)
417
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
418
        return outputs
thomwolf's avatar
thomwolf committed
419
420
421


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
422
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
423
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
424
425
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
426
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
427

428
    def forward(self, hidden_states, attention_mask, head_mask=None):
429
430
        all_hidden_states = ()
        all_attentions = ()
431
        for i, layer_module in enumerate(self.layer):
432
            if self.output_hidden_states:
433
                all_hidden_states = all_hidden_states + (hidden_states,)
434
435
436
437

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
438
            if self.output_attentions:
439
                all_attentions = all_attentions + (layer_outputs[1],)
440
441
442

        # Add last layer
        if self.output_hidden_states:
443
            all_hidden_states = all_hidden_states + (hidden_states,)
444

445
        outputs = (hidden_states,)
446
        if self.output_hidden_states:
447
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
448
        if self.output_attentions:
449
            outputs = outputs + (all_attentions,)
450
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
472
473
474
475
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
476
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
477
478
479
480
481
482
483
484
485
486
487
488

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)
489
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
490
491
492
493
494
495

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
496
497
498
499
500
501

        if self.torchscript:
            self.decoder.weight = nn.Parameter(bert_model_embedding_weights.clone())
        else:
            self.decoder.weight = bert_model_embedding_weights

thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


542
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
543
544
545
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
546
    config_class = BertConfig
547
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
548
549
550
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

551
552
553
    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
554
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
555
556
557
558
559
560
561
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
562
563
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
564
565
566
567
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
568
class BertModel(BertPreTrainedModel):
569
570
571
572
573
574
575
576
577
578
579
    r"""BERT model ("Bidirectional Embedding Representations from a Transformer").

    :class:`~pytorch_pretrained_bert.BertModel` is the basic BERT Transformer model with a layer of summed token, \
    position and sequence embeddings followed by a series of identical self-attention blocks (12 for BERT-base, 24 \
    for BERT-large). The model is instantiated with the following parameters.

    Arguments:
        config: a BertConfig class instance with the configuration to build a new model
        output_attentions: If True, also output attentions weights computed by the model at each layer. Default: False
        output_hidden_states: If True, also output hidden states computed by the model at each layer. Default: Fals

thomwolf's avatar
thomwolf committed
580

581
    Example::
thomwolf's avatar
thomwolf committed
582

583
584
585
586
        config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.BertModel(config=config)
thomwolf's avatar
thomwolf committed
587
588

    """
thomwolf's avatar
thomwolf committed
589
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
590
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
591

thomwolf's avatar
thomwolf committed
592
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
593
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
594
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
595

thomwolf's avatar
thomwolf committed
596
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
597

thomwolf's avatar
thomwolf committed
598
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
599
600
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
601
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
602
603
604
605
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

606
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.


        Arguments:
            input_ids: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the \
                vocabulary(see the tokens pre-processing logic in the scripts `run_bert_extract_features.py`, \
                `run_bert_classifier.py` and `run_bert_squad.py`)
            token_type_ids: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
                a `sentence B` token (see BERT paper for more details).
            attention_mask: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices \
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
                input sequence length in the current batch. It's the mask that we typically use for attention when \
                a batch has varying length sentences.
            output_all_encoded_layers: boolean which controls the content of the `encoded_layers` output as described \
            below. Default: `True`.
            head_mask: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 \
            and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 \
            => head is not masked.


        Returns:
            A tuple composed of (encoded_layers, pooled_output). Encoded layers are controlled by the \
            ``output_all_encoded_layers`` argument.

            If ``output_all_encoded_layers`` is set to True, outputs a list of the full sequences of \
            encoded-hidden-states at the end of each attention \
            block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a\
            torch.FloatTensor of size [batch_size, sequence_length, hidden_size].

            If set to False, outputs only the full sequence of hidden-states corresponding \
            to the last attention block of shape [batch_size, sequence_length, hidden_size].

            ``pooled_output`` is a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a \
            classifier pretrained on top of the hidden state associated to the first character of the \
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])


            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)


        """
thomwolf's avatar
thomwolf committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
679
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
680
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
681
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
682
683
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
684
685
        if head_mask is not None:
            if head_mask.dim() == 1:
686
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
687
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
688
            elif head_mask.dim() == 2:
689
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
690
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
691
692
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
693

thomwolf's avatar
thomwolf committed
694
        embedding_output = self.embeddings(input_ids, token_type_ids)
695
696
697
698
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
699
        pooled_output = self.pooler(sequence_output)
700

701
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
702
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
703
704


thomwolf's avatar
thomwolf committed
705
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
706
707
708
709
710
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

711
    Args:
712
713
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
714
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
715

716
717
718
719
720
721
    Example ::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForPreTraining(config)
thomwolf's avatar
thomwolf committed
722
    """
thomwolf's avatar
thomwolf committed
723
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
724
        super(BertForPreTraining, self).__init__(config)
725

thomwolf's avatar
thomwolf committed
726
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
727
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
728

thomwolf's avatar
thomwolf committed
729
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
730

731
732
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Args:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
            Either a torch.Tensor or tuple(torch.Tensor, torch.Tensor).

            if ``masked_lm_labels`` and ``next_sentence_label`` are not ``None``, outputs the total_loss which is the \
             sum of the masked language modeling loss and the next \
            sentence classification loss.

            if ``masked_lm_labels`` or ``next_sentence_label` is `None``, outputs a tuple comprising:
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        Example ::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForPreTraining(config)
            masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores, seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
783
784
785
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
786
787
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

788
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
789

thomwolf's avatar
thomwolf committed
790
791
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
792
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
793
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
794
            total_loss = masked_lm_loss + next_sentence_loss
795
            outputs = (total_loss,) + outputs
796
797

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
798
799


thomwolf's avatar
thomwolf committed
800
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
801
802
803
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

804
    Args:
805
806
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
807
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
808

809
810
811
812
813
814
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMaskedLM(config)
thomwolf's avatar
thomwolf committed
815
    """
thomwolf's avatar
thomwolf committed
816
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
817
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
818

thomwolf's avatar
thomwolf committed
819
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
820
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
821

thomwolf's avatar
thomwolf committed
822
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
823

824
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Args:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            Masked language modeling loss if `masked_lm_labels` is specified, masked language modeling
            logits of shape [batch_size, sequence_length, vocab_size] otherwise.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
864
865
866
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
867
868
        prediction_scores = self.cls(sequence_output)

869
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
870
871
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
872
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
873
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
874
875

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
876
877


thomwolf's avatar
thomwolf committed
878
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
879
880
881
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

882
    Args:
883
884
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
885
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
886

887
888
889
890
891
892
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForNextSentencePrediction(config)
thomwolf's avatar
thomwolf committed
893
    """
thomwolf's avatar
thomwolf committed
894
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
895
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
896

thomwolf's avatar
thomwolf committed
897
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
898
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
899

thomwolf's avatar
thomwolf committed
900
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
901

902
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Args:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between
                0 and 1.It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked,
                0.0 => head is not masked.

        Returns:
            If `next_sentence_label` is specified, outputs the total_loss which is the sum of the masked language \
            modeling loss and the next sentence classification loss.
            if `next_sentence_label` is `None`, outputs the next sentence classification logits of shape [batch_size, 2].


        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
941
942
943
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

944
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
945

946
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
947
948
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
949
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
950
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
951
952

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
953
954


thomwolf's avatar
thomwolf committed
955
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
956
957
958
959
960
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
961
962
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
963
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
964
965
        `num_labels`: the number of classes for the classifier. Default = 2.

966
967
968
969
970
971
972
973
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
974
    """
thomwolf's avatar
thomwolf committed
975
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
976
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
977
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
978

thomwolf's avatar
thomwolf committed
979
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
980
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
981
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
982

thomwolf's avatar
thomwolf committed
983
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
984

985
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
                with indices selected in [0, ..., num_labels].
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `labels` is not `None`, outputs the CrossEntropy classification loss of the output with the labels.
            if `labels` is `None`, outputs the classification logits of shape `[batch_size, num_labels]`.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1020
1021
1022
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1023
1024
1025
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1026
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1027

thomwolf's avatar
thomwolf committed
1028
        if labels is not None:
1029
1030
1031
1032
1033
1034
1035
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1036
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1037
1038

        return outputs  # (loss), logits, (hidden_states), (attentions)
1039
1040


thomwolf's avatar
thomwolf committed
1041
class BertForMultipleChoice(BertPreTrainedModel):
1042
    """BERT model for multiple choice tasks.
1043
    This module is composed of the BERT model with a linear layer on top of the pooled output.
1044

1045
    Parameters:
1046
1047
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1048
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1049

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
        input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
        token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMultipleChoice(config)
        logits = model(input_ids, token_type_ids, input_mask)
1061
    """
thomwolf's avatar
thomwolf committed
1062
    def __init__(self, config):
1063
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1064

thomwolf's avatar
thomwolf committed
1065
        self.bert = BertModel(config)
1066
1067
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1068

thomwolf's avatar
thomwolf committed
1069
        self.apply(self.init_weights)
1070

1071
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
                with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
                and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
                with indices selected in [0, ..., num_choices].
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `labels` is not `None`, outputs the CrossEntropy classification loss of the output with the labels.
            if `labels` is `None`, outputs the classification logits of shape [batch_size, num_labels].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
            input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
            token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForMultipleChoice(config)
            logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1107
1108
1109
        """ Input shapes should be [bsz, num choices, seq length] """
        num_choices = input_ids.shape[1]

1110
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1111
1112
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1113
1114
1115
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1116
1117
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1118
        reshaped_logits = logits.view(-1, num_choices)
1119

1120
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1121

1122
1123
1124
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1125
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1126
1127

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1128
1129


thomwolf's avatar
thomwolf committed
1130
class BertForTokenClassification(BertPreTrainedModel):
1131
1132
1133
1134
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

1135
    Parameters:
1136
1137
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1138
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1139
1140
        `num_labels`: the number of classes for the classifier. Default = 2.

1141
1142
1143
1144
1145
1146
1147
1148
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForTokenClassification(config, num_labels)
1149
    """
thomwolf's avatar
thomwolf committed
1150
    def __init__(self, config):
1151
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1152
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1153

thomwolf's avatar
thomwolf committed
1154
        self.bert = BertModel(config)
1155
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1156
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1157

thomwolf's avatar
thomwolf committed
1158
        self.apply(self.init_weights)
1159

1160
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
        """
        Performs a model forward pass. Can be called by calling the class directly, once it has been instantiated.

        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [0, ..., num_labels].
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `labels` is not `None`, outputs the CrossEntropy classification loss of the output with the labels.
            if `labels` is `None`, outputs the classification logits of shape [batch_size, sequence_length, num_labels].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1195
1196
1197
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1198
1199
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1200

1201
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1202
1203
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1204
1205
1206
1207
1208
1209
1210
1211
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1212
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1213
1214

        return outputs  # (loss), logits, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1215
1216


thomwolf's avatar
thomwolf committed
1217
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1218
1219
1220
1221
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

1222
    Parameters:
1223
1224
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1225
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1226

1227
1228
1229
1230
1231
1232
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1233
    """
thomwolf's avatar
thomwolf committed
1234
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1235
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1236
1237
1238
1239
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1240

thomwolf's avatar
thomwolf committed
1241
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1242

thomwolf's avatar
thomwolf committed
1243
1244
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
        """
        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if `start_positions` and `end_positions` are not `None`, outputs the total_loss which is the sum of the
            CrossEntropy loss for the start and end token positions.
            if `start_positions` or `end_positions` is `None`, outputs a tuple of start_logits, end_logits which are the
            logits respectively for the start and end position tokens of shape [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1281
1282
1283
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1284
1285
1286
1287
1288
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1289
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1305
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1306
1307

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)