modeling_bert.py 69.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

31
from .modeling_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
46
47
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
49
}
50

51
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
52
53
54
55
56
57
58
59
60
61
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
62
63
64
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
65
66
}

thomwolf's avatar
thomwolf committed
67

68
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
69
70
    """ Load tf checkpoints in a pytorch model
    """
71
72
73
74
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
75
    except ImportError:
thomwolf's avatar
thomwolf committed
76
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
77
78
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
79
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
80
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
81
82
83
84
85
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
86
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
87
88
89
90
91
92
93
94
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
95
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
96
            logger.info("Skipping {}".format("/".join(name)))
97
98
99
100
101
102
103
104
105
106
107
108
109
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
110
111
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
112
            else:
113
114
115
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
116
                    logger.info("Skipping {}".format("/".join(name)))
117
                    continue
118
119
120
121
122
123
124
125
126
127
128
129
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
130
        logger.info("Initialize PyTorch weight {}".format(name))
131
132
133
134
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
135
136
137
138
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
139
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
148
149
150
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


151
class BertConfig(PretrainedConfig):
152
    r"""
153
        :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
154
        `BertModel`.
155

156
        Arguments:
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
177
            layer_norm_eps: The epsilon used by LayerNorm.
178
    """
thomwolf's avatar
thomwolf committed
179
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        """Constructs BertConfig.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        Arguments:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
219
        """
thomwolf's avatar
thomwolf committed
220
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
221
222
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
223
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
239
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
240
241
242
243
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

244

245

246
247
248
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
249
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
264
265
266
267
268
269

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
270
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
271
272
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
273
274
275

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
276
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
297
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
298
299
300
301
302
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
303
        self.output_attentions = config.output_attentions
304

thomwolf's avatar
thomwolf committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

320
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

342
343
344
345
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
346
        context_layer = torch.matmul(attention_probs, value_layer)
347

thomwolf's avatar
thomwolf committed
348
349
350
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
351

352
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
353
        return outputs
thomwolf's avatar
thomwolf committed
354
355
356
357
358
359


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
360
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
361
362
363
364
365
366
367
368
369
370
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
371
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
372
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
373
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
374
375
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
376
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
377
378
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
379
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
388
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
389
390
391
392
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

393
    def forward(self, input_tensor, attention_mask, head_mask=None):
394
395
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
396
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
397
        return outputs
thomwolf's avatar
thomwolf committed
398
399
400
401
402
403


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
404
405
406
407
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
408
409
410
411
412
413
414
415
416
417
418

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
419
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
420
421
422
423
424
425
426
427
428
429
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
430
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
431
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
432
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
433
434
435
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

436
    def forward(self, hidden_states, attention_mask, head_mask=None):
437
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
438
439
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
440
        layer_output = self.output(intermediate_output, attention_output)
441
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
442
        return outputs
thomwolf's avatar
thomwolf committed
443
444
445


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
446
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
447
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
448
449
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
450
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
451

452
    def forward(self, hidden_states, attention_mask, head_mask=None):
453
454
        all_hidden_states = ()
        all_attentions = ()
455
        for i, layer_module in enumerate(self.layer):
456
            if self.output_hidden_states:
457
                all_hidden_states = all_hidden_states + (hidden_states,)
458
459
460
461

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
462
            if self.output_attentions:
463
                all_attentions = all_attentions + (layer_outputs[1],)
464
465
466

        # Add last layer
        if self.output_hidden_states:
467
            all_hidden_states = all_hidden_states + (hidden_states,)
468

469
        outputs = (hidden_states,)
470
        if self.output_hidden_states:
471
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
472
        if self.output_attentions:
473
            outputs = outputs + (all_attentions,)
474
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
496
497
498
499
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
500
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
501
502
503
504
505
506
507
508
509

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
510
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
511
512
513
514
515
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
516
517
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
518
                                 bias=False)
519

thomwolf's avatar
thomwolf committed
520
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
521
522
523
524
525
526
527
528

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
529
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
530
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
531
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
549
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
550
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
551
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
552
553
554
555
556
557
558
559
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


560
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
561
562
563
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
564
    config_class = BertConfig
565
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
566
567
568
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

569
570
571
    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
572
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
580
581
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
582
583
584
585
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
586
class BertModel(BertPreTrainedModel):
587
588
    r"""BERT model ("Bidirectional Embedding Representations from a Transformer").

589
    :class:`~pytorch_transformers.BertModel` is the basic BERT Transformer model with a layer of summed token, \
590
591
592
593
594
595
596
597
    position and sequence embeddings followed by a series of identical self-attention blocks (12 for BERT-base, 24 \
    for BERT-large). The model is instantiated with the following parameters.

    Arguments:
        config: a BertConfig class instance with the configuration to build a new model
        output_attentions: If True, also output attentions weights computed by the model at each layer. Default: False
        output_hidden_states: If True, also output hidden states computed by the model at each layer. Default: Fals

thomwolf's avatar
thomwolf committed
598

599
    Example::
thomwolf's avatar
thomwolf committed
600

601
602
603
604
        config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.BertModel(config=config)
thomwolf's avatar
thomwolf committed
605
606

    """
thomwolf's avatar
thomwolf committed
607
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
608
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
609

thomwolf's avatar
thomwolf committed
610
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
611
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
612
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
613

thomwolf's avatar
thomwolf committed
614
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
615

thomwolf's avatar
thomwolf committed
616
617
618
619
620
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings

thomwolf's avatar
thomwolf committed
621
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
622
623
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
624
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
625
626
627
628
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

629
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
630
        """
631
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
632
633
634


        Arguments:
635
            input_ids: a ``torch.LongTensor`` of shape [batch_size, sequence_length] with the word token indices in the \
636
637
                vocabulary(see the tokens pre-processing logic in the scripts `run_bert_extract_features.py`, \
                `run_bert_classifier.py` and `run_bert_squad.py`)
638
            token_type_ids: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token \
639
640
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
                a `sentence B` token (see BERT paper for more details).
641
            attention_mask: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices \
642
643
644
645
646
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
                input sequence length in the current batch. It's the mask that we typically use for attention when \
                a batch has varying length sentences.
            output_all_encoded_layers: boolean which controls the content of the `encoded_layers` output as described \
            below. Default: `True`.
647
            head_mask: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 \
648
649
650
651
652
653
654
655
656
657
658
            and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 \
            => head is not masked.


        Returns:
            A tuple composed of (encoded_layers, pooled_output). Encoded layers are controlled by the \
            ``output_all_encoded_layers`` argument.

            If ``output_all_encoded_layers`` is set to True, outputs a list of the full sequences of \
            encoded-hidden-states at the end of each attention \
            block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a\
659
            ``torch.FloatTensor`` of size [batch_size, sequence_length, hidden_size].
660
661
662
663

            If set to False, outputs only the full sequence of hidden-states corresponding \
            to the last attention block of shape [batch_size, sequence_length, hidden_size].

664
            ``pooled_output`` is a ``torch.FloatTensor`` of size [batch_size, hidden_size] which is the output of a \
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
            classifier pretrained on top of the hidden state associated to the first character of the \
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])


            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)


        """
thomwolf's avatar
thomwolf committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
702
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
703
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
704
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
705
706
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
707
708
        if head_mask is not None:
            if head_mask.dim() == 1:
709
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
710
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
711
            elif head_mask.dim() == 2:
712
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
713
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
714
715
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
716

thomwolf's avatar
thomwolf committed
717
        embedding_output = self.embeddings(input_ids, token_type_ids)
718
719
720
721
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
722
        pooled_output = self.pooler(sequence_output)
723

724
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
725
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
726
727


thomwolf's avatar
thomwolf committed
728
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
729
730
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
731

thomwolf's avatar
thomwolf committed
732
        - the masked language modeling head, and
733

thomwolf's avatar
thomwolf committed
734
735
        - the next sentence classification head.

736
    Args:
737
738
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
739
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
740

741
742
743
744
745
746
    Example ::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForPreTraining(config)
thomwolf's avatar
thomwolf committed
747
    """
thomwolf's avatar
thomwolf committed
748
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
749
        super(BertForPreTraining, self).__init__(config)
750

thomwolf's avatar
thomwolf committed
751
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
752
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
753

thomwolf's avatar
thomwolf committed
754
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
755
756
757
758
759
760
761
762
763
764
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        input_embeddings = self.bert.embeddings.word_embeddings.weight
        if self.config.torchscript:
            self.cls.predictions.decoder.weight = nn.Parameter(input_embeddings.clone())
        else:
765
            self.cls.predictions.decoder.weight = input_embeddings  # Tied weights
thomwolf's avatar
thomwolf committed
766

767
768
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
769
        """
770
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
771
772

        Args:
773
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
774
775
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
776
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
777
778
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
779
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
780
781
782
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
783
            `masked_lm_labels`: optional masked language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
784
785
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
786
            `next_sentence_label`: optional next sentence classification loss: ``torch.LongTensor`` of shape [batch_size]
787
788
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
789
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
790
791
792
793
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
794
            Either a ``torch.Tensor`` or ``tuple(torch.Tensor, torch.Tensor)``.
795
796
797
798
799

            if ``masked_lm_labels`` and ``next_sentence_label`` are not ``None``, outputs the total_loss which is the \
             sum of the masked language modeling loss and the next \
            sentence classification loss.

800
801
802
803
            if ``masked_lm_labels`` or ``next_sentence_label`` is ``None``, outputs a tuple made of:

                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
                - the next sentence classification logits of shape [batch_size, 2].

        Example ::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForPreTraining(config)
            masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores, seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
821
822
823
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
824
825
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

826
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
827

thomwolf's avatar
thomwolf committed
828
829
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
830
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
831
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
832
            total_loss = masked_lm_loss + next_sentence_loss
833
            outputs = (total_loss,) + outputs
834
835

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
836
837


thomwolf's avatar
thomwolf committed
838
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
839
840
841
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

842
    Args:
843
844
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
845
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
846

847
848
849
850
851
852
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMaskedLM(config)
thomwolf's avatar
thomwolf committed
853
    """
thomwolf's avatar
thomwolf committed
854
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
855
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
856

thomwolf's avatar
thomwolf committed
857
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
858
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
859

thomwolf's avatar
thomwolf committed
860
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
861
862
863
864
865
866
867
868
869
870
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        input_embeddings = self.bert.embeddings.word_embeddings.weight
        if self.config.torchscript:
            self.cls.predictions.decoder.weight = nn.Parameter(input_embeddings.clone())
        else:
871
            self.cls.predictions.decoder.weight = input_embeddings  # Tied weights
thomwolf's avatar
thomwolf committed
872

873
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
874
        """
875
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
876
877

        Args:
878
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
879
880
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
881
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
882
883
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
884
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
885
886
887
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
888
            `masked_lm_labels`: masked language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
889
890
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
891
            `head_mask`: an optional ``torch.LongTensor`` of shape [num_heads] with indices
892
893
894
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
895
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
896
897
898
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
899
            Masked language modeling loss if ``masked_lm_labels`` is specified, masked language modeling
900
901
902
903
904
905
906
907
908
909
910
911
912
            logits of shape [batch_size, sequence_length, vocab_size] otherwise.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
913
914
915
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
916
917
        prediction_scores = self.cls(sequence_output)

918
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
919
920
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
921
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
922
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
923
924

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
925
926


thomwolf's avatar
thomwolf committed
927
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
928
929
930
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

931
    Args:
932
933
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
934
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
935

936
937
938
939
940
941
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForNextSentencePrediction(config)
thomwolf's avatar
thomwolf committed
942
    """
thomwolf's avatar
thomwolf committed
943
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
944
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
945

thomwolf's avatar
thomwolf committed
946
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
947
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
948

thomwolf's avatar
thomwolf committed
949
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
950

951
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
952
        """
953
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
954
955

        Args:
956
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
957
958
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
959
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
960
961
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
962
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
963
964
965
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
966
            `next_sentence_label`: next sentence classification loss: ``torch.LongTensor`` of shape [batch_size]
967
968
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
969
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between
970
971
972
973
                0 and 1.It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked,
                0.0 => head is not masked.

        Returns:
974
975
976
            If ``next_sentence_label`` is specified, outputs the total_loss which is the sum of the masked language
            modeling loss and the next sentence classification loss. If ``next_sentence_label`` is ``None``, outputs
            the next sentence classification logits of shape [batch_size, 2].
977
978
979
980
981
982
983
984
985
986
987
988
989


        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
990
991
992
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

993
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
994

995
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
996
997
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
998
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
999
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
1000
1001

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1002
1003


thomwolf's avatar
thomwolf committed
1004
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1005
1006
1007
1008
1009
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
1010
1011
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1012
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1013
1014
        `num_labels`: the number of classes for the classifier. Default = 2.

1015
1016
1017
1018
1019
1020
1021
1022
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
1023
    """
thomwolf's avatar
thomwolf committed
1024
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1025
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1026
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1027

thomwolf's avatar
thomwolf committed
1028
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1029
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1030
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
1031

thomwolf's avatar
thomwolf committed
1032
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1033

1034
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1035
        """
1036
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1037
1038

        Parameters:
1039
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1040
1041
                with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1042
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1043
1044
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1045
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1046
1047
1048
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1049
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size]
1050
                with indices selected in [0, ..., num_labels].
1051
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1052
1053
1054
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1055
1056
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, num_labels].
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1069
1070
1071
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1072
1073
1074
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1075
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1076

thomwolf's avatar
thomwolf committed
1077
        if labels is not None:
1078
1079
1080
1081
1082
1083
1084
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1085
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1086
1087

        return outputs  # (loss), logits, (hidden_states), (attentions)
1088
1089


thomwolf's avatar
thomwolf committed
1090
class BertForMultipleChoice(BertPreTrainedModel):
1091
    """BERT model for multiple choice tasks.
1092
    This module is composed of the BERT model with a linear layer on top of the pooled output.
1093

1094
    Parameters:
1095
1096
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1097
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
        input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
        token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMultipleChoice(config)
        logits = model(input_ids, token_type_ids, input_mask)
1110
    """
thomwolf's avatar
thomwolf committed
1111
    def __init__(self, config):
1112
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1113

thomwolf's avatar
thomwolf committed
1114
        self.bert = BertModel(config)
1115
1116
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1117

thomwolf's avatar
thomwolf committed
1118
        self.apply(self.init_weights)
1119

1120
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1121
        """
1122
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1123
1124

        Parameters:
1125
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
1126
1127
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1128
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
1129
1130
                with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
                and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
1131
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with indices
1132
1133
1134
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1135
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size]
1136
                with indices selected in [0, ..., num_choices].
1137
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1138
1139
1140
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1141
1142
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, num_labels].
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
            input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
            token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForMultipleChoice(config)
            logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1156
1157
1158
        """ Input shapes should be [bsz, num choices, seq length] """
        num_choices = input_ids.shape[1]

1159
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1160
1161
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1162
1163
1164
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1165
1166
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1167
        reshaped_logits = logits.view(-1, num_choices)
1168

1169
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1170

1171
1172
1173
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1174
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1175
1176

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1177
1178


thomwolf's avatar
thomwolf committed
1179
class BertForTokenClassification(BertPreTrainedModel):
1180
1181
1182
1183
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

1184
    Parameters:
1185
1186
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1187
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1188
1189
        `num_labels`: the number of classes for the classifier. Default = 2.

1190
1191
1192
1193
1194
1195
1196
1197
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForTokenClassification(config, num_labels)
1198
    """
thomwolf's avatar
thomwolf committed
1199
    def __init__(self, config):
1200
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1201
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1202

thomwolf's avatar
thomwolf committed
1203
        self.bert = BertModel(config)
1204
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1205
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1206

thomwolf's avatar
thomwolf committed
1207
        self.apply(self.init_weights)
1208

1209
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1210
        """
1211
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1212
1213

        Parameters:
1214
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1215
1216
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1217
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1218
1219
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1220
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1221
1222
1223
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1224
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size, sequence_length]
1225
                with indices selected in [0, ..., num_labels].
1226
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1227
1228
1229
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1230
1231
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1244
1245
1246
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1247
1248
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1249

1250
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1251
1252
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1253
1254
1255
1256
1257
1258
1259
1260
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1261
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1262
1263

        return outputs  # (loss), logits, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1264
1265


thomwolf's avatar
thomwolf committed
1266
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1267
1268
1269
1270
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

1271
    Parameters:
1272
1273
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1274
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1275

1276
1277
1278
1279
1280
1281
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1282
    """
thomwolf's avatar
thomwolf committed
1283
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1284
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1285
1286
1287
1288
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1289

thomwolf's avatar
thomwolf committed
1290
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1291

thomwolf's avatar
thomwolf committed
1292
1293
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
1294
        """
1295
1296
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

1297
        Parameters:
1298
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1299
1300
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1301
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1302
1303
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1304
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1305
1306
1307
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1308
            `start_positions`: position of the first token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
1309
1310
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
1311
            `end_positions`: position of the last token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
1312
1313
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
1314
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1315
1316
1317
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1318
            If ``start_positions`` and ``end_positions`` are not ``None``, outputs the total_loss which is the sum of the
1319
            CrossEntropy loss for the start and end token positions.
1320
            If ``start_positions`` or ``end_positions`` is ``None``, outputs a tuple of start_logits, end_logits which are the
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
            logits respectively for the start and end position tokens of shape [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1332
1333
1334
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1335
1336
1337
1338
1339
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1340
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1356
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1357
1358

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)