modeling_xlnet.py 68.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
29
from torch.nn import functional as F
30
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
31

32
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
thomwolf's avatar
thomwolf committed
33
34
                             SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits,
                             add_start_docstrings)
35

thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
40
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
41
42
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
43
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
44
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json",
thomwolf's avatar
thomwolf committed
45
46
47
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
48

49
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
56
57
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
58
59
60
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
61
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
62
63
64
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
65
66
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
67
68
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
69

thomwolf's avatar
thomwolf committed
70
71
72
73
74
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
75
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

119
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
126
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
127
128
129
130
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
131
    tf_weights = {}
thomwolf's avatar
thomwolf committed
132
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
133
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
134
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
135
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
136

137
    # Build TF to PyTorch weights loading map
138
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
139

thomwolf's avatar
thomwolf committed
140
    for name, pointer in tf_to_pt_map.items():
thomwolf's avatar
thomwolf committed
141
        logger.info("Importing {}".format(name))
142
        if name not in tf_weights:
thomwolf's avatar
thomwolf committed
143
            logger.info("{} not in tf pre-trained weights, skipping".format(name))
144
            continue
thomwolf's avatar
thomwolf committed
145
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
146
147
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
148
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
149
            logger.info("Transposing")
thomwolf's avatar
thomwolf committed
150
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
161
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
169
            logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
170
171
172
173
174
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
175
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
176
177
178
179
    return model


def gelu(x):
180
181
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
182
183
        Also see https://arxiv.org/abs/1606.08415
    """
184
185
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


195
class XLNetConfig(PretrainedConfig):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """Configuration class to store the configuration of a ``XLNetModel``.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLNet, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
235
    """
236
    pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
237

thomwolf's avatar
thomwolf committed
238
    def __init__(self,
thomwolf's avatar
thomwolf committed
239
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
240
241
242
243
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
244
245
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
246
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
247
248

                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
256
                 same_length=False,
thomwolf's avatar
thomwolf committed
257

thomwolf's avatar
thomwolf committed
258
259
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
260
261
262
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
263
                 summary_last_dropout=0.1,
thomwolf's avatar
thomwolf committed
264
265
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
266
                 **kwargs):
thomwolf's avatar
thomwolf committed
267
268
        """Constructs XLNetConfig.
        """
thomwolf's avatar
thomwolf committed
269
270
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
271
272
273
274
275
276
277
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
278
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
279
280
281
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
282
283
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
284
285
286
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
287
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
288

thomwolf's avatar
thomwolf committed
289
290
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
291
292
293
294
295
296
297

            self.dropout = dropout
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
298

299
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
300
301
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
302
303
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
304
            self.summary_last_dropout = summary_last_dropout
thomwolf's avatar
thomwolf committed
305
306
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
307
308
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
VictorSanh's avatar
VictorSanh committed
309
                             " or the path to a pretrained model config file (str)")
thomwolf's avatar
thomwolf committed
310

311
312
313
314
    @property
    def max_position_embeddings(self):
        return -1

thomwolf's avatar
thomwolf committed
315
316
317
318
    @property
    def vocab_size(self):
        return self.n_token

thomwolf's avatar
thomwolf committed
319
320
321
322
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_token = value

thomwolf's avatar
thomwolf committed
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
335
336
337

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
雷打不动!'s avatar
雷打不动! committed
338
except (ImportError, AttributeError) as e:
thomwolf's avatar
thomwolf committed
339
340
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
341
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
342
343
344
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
345
346
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
347
348
349
350
351
352
353
354
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
355
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
356
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
357
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
358
359
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
360
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
361
362
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
363
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
364

thomwolf's avatar
thomwolf committed
365
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
366
367
368
369
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

thomwolf's avatar
thomwolf committed
370
371
372
373
374
        self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
375

thomwolf's avatar
thomwolf committed
376
377
378
379
        self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
380

thomwolf's avatar
thomwolf committed
381
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
382
383
384
385
386
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
393
394
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
395
        # x = x[:, 0:klen, :, :]
thomwolf's avatar
thomwolf committed
396
        x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
thomwolf's avatar
thomwolf committed
397
398
399

        return x

400
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
401
402
403
404
405
406
407
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
408
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

427
428
429
430
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
431
432
433
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

434
435
436
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
445
446
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
447
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
478
479
480
481
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489
490
491
492
493

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
494
495
496
497
498
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
499
500
501
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
502
503
504
505
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
506
507
508

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
509
510
511
512

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
530
531
532
533
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
534
535

            # post processing
thomwolf's avatar
thomwolf committed
536
537
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
538

539
        outputs = (output_h, output_g)
540
        if self.output_attentions:
541
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
542
        return outputs
thomwolf's avatar
thomwolf committed
543
544
545
546

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
547
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
548
549
550
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
551
552
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
553
554
555
556
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
564
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
565
        return output
thomwolf's avatar
thomwolf committed
566
567

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
568
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
569
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
570
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
571
572
573
574
575
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
576
577
578
579
580
581
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
582
        if output_g is not None:
thomwolf's avatar
thomwolf committed
583
584
585
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

586
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
587
        return outputs
thomwolf's avatar
thomwolf committed
588

589
590

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
591
592
593
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
594
    config_class = XLNetConfig
595
    pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
596
597
598
599
600
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
601

thomwolf's avatar
thomwolf committed
602
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
603
604
605
606
607
608
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
609
610
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
611
612
613
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
614
615
616
617
618
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
619
620
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
621
622


thomwolf's avatar
thomwolf committed
623
624
625
626
627
628
XLNET_START_DOCSTRING = r"""    The XLNet model was proposed in
    `XLNet: Generalized Autoregressive Pretraining for Language Understanding`_
    by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
    XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method
    to learn bidirectional contexts by maximizing the expected likelihood over all permutations
    of the input sequence factorization order.
629

thomwolf's avatar
thomwolf committed
630
    The specific attention pattern can be controlled at training and test time using the `perm_mask` input.
631

thomwolf's avatar
thomwolf committed
632
633
634
635
636
637
    Do to the difficulty of training a fully auto-regressive model over various factorization order,
    XLNet is pretrained using only a sub-set of the output tokens as target which are selected
    with the `target_mapping` input.

    To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the `perm_mask` and
    `target_mapping` inputs to control the attention span and outputs (see examples in `examples/run_generation.py`)
638

thomwolf's avatar
thomwolf committed
639
640
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
641

thomwolf's avatar
thomwolf committed
642
643
    .. _`XLNet: Generalized Autoregressive Pretraining for Language Understanding`:
        http://arxiv.org/abs/1906.08237
644

thomwolf's avatar
thomwolf committed
645
646
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
647

thomwolf's avatar
thomwolf committed
648
649
    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
650
651
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
652
653
654
655
656
657
"""

XLNET_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
658
659
            XLNet is a model with relative position embeddings so you can either pad the inputs on
            the right or on the left.
thomwolf's avatar
thomwolf committed
660
661
662
663
664
665
666
            Indices can be obtained using :class:`pytorch_transformers.XLNetTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
thomwolf's avatar
thomwolf committed
667
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
668
669
670
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
671
        **input_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677
678
679
            Mask to avoid performing attention on padding token indices.
            Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding.
            Kept for compatibility with the original code base.
            You can only uses one of `input_mask` and `attention_mask`
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are MASKED, ``0`` for tokens that are NOT MASKED.
        **mems**: (`optional`)
            list of ``torch.FloatTensor`` (one for each layer):
thomwolf's avatar
thomwolf committed
680
            that contains pre-computed hidden-states (key and values in the attention blocks) as output by the model
thomwolf's avatar
thomwolf committed
681
            (see `mems` output below). Can be used to speed up sequential decoding and attend to longer context.
thomwolf's avatar
thomwolf committed
682
683
684
            To activate mems you need to set up config.mem_len to a positive value which will be the max number of tokens in
            the memory output by the model. E.g. `model = XLNetModel.from_pretrained('xlnet-base-case, mem_len=1024)` will
            instantiate a model which can use up to 1024 tokens of memory (in addition to the input it self).
thomwolf's avatar
thomwolf committed
685
686
687
688
689
690
691
692
693
694
        **perm_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, sequence_length)``:
            Mask to indicate the attention pattern for each input token with values selected in ``[0, 1]``:
            If ``perm_mask[k, i, j] = 0``, i attend to j in batch k;
            if ``perm_mask[k, i, j] = 1``, i does not attend to j in batch k.
            If None, each token attends to all the others (full bidirectional attention).
            Only used during pretraining (to define factorization order) or for sequential decoding (generation).
        **target_mapping**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_predict, sequence_length)``:
            Mask to indicate the output tokens to use.
            If ``target_mapping[k, i, j] = 1``, the i-th predict in batch k is on the j-th token.
            Only used during pretraining for partial prediction or for sequential decoding (generation).
thomwolf's avatar
thomwolf committed
695
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLNet Model transformer outputing raw hidden-states without any specific head on top.",
                      XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
class XLNetModel(XLNetPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
711
712
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
713
714
715
716
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
717
718
719
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
720
721
722

    Examples::

wangfei's avatar
wangfei committed
723
724
725
726
727
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetModel.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
728

729
    """
thomwolf's avatar
thomwolf committed
730
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
731
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
732
733
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
734

thomwolf's avatar
thomwolf committed
735
736
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
737
738
739
740
741
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
742
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
743

thomwolf's avatar
thomwolf committed
744
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
thomwolf's avatar
thomwolf committed
745
        self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
746
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
747
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
748

749
750
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
751
752
    def _resize_token_embeddings(self, new_num_tokens):
        self.word_embedding = self._get_resized_embeddings(self.word_embedding, new_num_tokens)
thomwolf's avatar
thomwolf committed
753
        return self.word_embedding
thomwolf's avatar
thomwolf committed
754

thomwolf's avatar
thomwolf committed
755
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
756
        raise NotImplementedError
thomwolf's avatar
thomwolf committed
757

thomwolf's avatar
thomwolf committed
758
    def create_mask(self, qlen, mlen):
759
760
761
762
        """
        Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.

        Args:
763
764
            qlen: TODO Lysandre didn't fill
            mlen: TODO Lysandre didn't fill
765
766
767
768
769
770
771
772
773
774
775

        ::

                  same_length=False:      same_length=True:
                  <mlen > <  qlen >       <mlen > <  qlen >
               ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
                 [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
            qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
                 [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
               v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]

thomwolf's avatar
thomwolf committed
776
777
778
779
780
781
782
783
784
785
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
803
804
805
806
807
808
809
810
811
812
813
814
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
815
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
816
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
817
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
818
819
820
821
822
823
824
825
826
827
828

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
829
830
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
831
832
833
834
835
836

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
837
838
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
839
            else:
thomwolf's avatar
thomwolf committed
840
841
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
842
843
844

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
845
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
846
847
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
848
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
849

thomwolf's avatar
thomwolf committed
850
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
851
852
        return pos_emb

thomwolf's avatar
thomwolf committed
853
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
854
                mems=None, perm_mask=None, target_mapping=None, head_mask=None):
855
856
857
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
858
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
859
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
860
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
861
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
862
863
864
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None

thomwolf's avatar
thomwolf committed
865
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
866
        mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
thomwolf's avatar
thomwolf committed
867
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
868
869
870

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
871
872
873
874

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
875
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
876
877
878
879
880
881
882
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
883
884
885
886
887
888
889
890
891
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
892
893
894
895
896
897
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
898
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
899
900
901
902
903
904
905
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
906
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
907
908

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
909
910
911
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
912
913
914
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
915
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
916
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
917
        output_h = self.dropout(word_emb_k)
918
919
920
921
922
        if target_mapping is not None:
            word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
        # else:  # We removed the inp_q input which was same as target mapping
        #     inp_q_ext = inp_q[:, :, None]
        #     word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
923
924
925
926
927
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
928
929
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
930
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
931
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
932
933

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
934
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
935
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
936
937
938
939
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
940
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
941
942
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
943
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
944
945
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
946
947
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
948
949
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
950
951
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
952
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
953
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
954
955
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
956
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
957

958
        new_mems = ()
thomwolf's avatar
thomwolf committed
959
960
961
        if mems is None:
            mems = [None] * len(self.layer)

962
        attentions = []
963
        hidden_states = []
thomwolf's avatar
thomwolf committed
964
965
        for i, layer_module in enumerate(self.layer):
            # cache new mems
966
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
967
968
969
970
971
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
972
                                   head_mask=head_mask[i])
973
974
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
975
                attentions.append(outputs[2])
976
977
978

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
979
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
980
981
982

        output = self.dropout(output_g if output_g is not None else output_h)

983
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
984
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
985
986
        if self.output_hidden_states:
            if output_g is not None:
987
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
988
            else:
989
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
990
            outputs = outputs + (hidden_states,)
991
        if self.output_attentions:
992
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
993
            outputs = outputs + (attentions,)
994

995
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
996
997


thomwolf's avatar
thomwolf committed
998
999
1000
@add_start_docstrings("""XLNet Model with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1001
class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
1018
1019
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
1020
1021
1022
1023
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1024
1025
1026
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1027
1028
1029

    Examples::

wangfei's avatar
wangfei committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
        # We show how to setup inputs to predict a next token using a bi-directional context.
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0)  # We will predict the masked token
        perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float)  # Shape [1, 1, seq_length] => let's predict one token
        target_mapping[0, 0, -1] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)
        outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
        next_token_logits = outputs[0]  # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
1040

thomwolf's avatar
thomwolf committed
1041
    """
thomwolf's avatar
thomwolf committed
1042
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1043
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
1044
1045
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
1046

thomwolf's avatar
thomwolf committed
1047
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1048
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
1049

thomwolf's avatar
thomwolf committed
1050
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1051
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1052

thomwolf's avatar
thomwolf committed
1053
1054
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
1055
        """
thomwolf's avatar
thomwolf committed
1056
        self._tie_or_clone_weights(self.lm_loss, self.transformer.word_embedding)
thomwolf's avatar
thomwolf committed
1057

thomwolf's avatar
thomwolf committed
1058
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1059
                mems=None, perm_mask=None, target_mapping=None,
1060
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1061
1062
1063
1064
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
1065
1066

        logits = self.lm_loss(transformer_outputs[0])
1067

1068
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1069

1070
        if labels is not None:
1071
1072
1073
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1074
                            labels.view(-1))
1075
            outputs = (loss,) + outputs
1076

thomwolf's avatar
thomwolf committed
1077
        return outputs  # return (loss), logits, mems, (hidden states), (attentions)
1078
1079


thomwolf's avatar
thomwolf committed
1080
1081
1082
@add_start_docstrings("""XLNet Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
1083
class XLNetForSequenceClassification(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1084
1085
1086
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
1087
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
1099
1100
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
1101
1102
1103
1104
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1105
1106
1107
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1108
1109
1110

    Examples::

wangfei's avatar
wangfei committed
1111
1112
1113
1114
1115
1116
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
1117
1118

    """
thomwolf's avatar
thomwolf committed
1119
    def __init__(self, config):
1120
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1121
        self.num_labels = config.num_labels
1122

thomwolf's avatar
thomwolf committed
1123
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1124
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1125
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1126

thomwolf's avatar
thomwolf committed
1127
        self.apply(self.init_weights)
1128

thomwolf's avatar
thomwolf committed
1129
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1130
                mems=None, perm_mask=None, target_mapping=None,
1131
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1132
1133
1134
1135
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
1136
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1137

1138
        output = self.sequence_summary(output)
1139
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1140

1141
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1142

1143
1144
1145
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1146
                loss_fct = MSELoss()
1147
                loss = loss_fct(logits.view(-1), labels.view(-1))
1148
            else:
1149
1150
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1151
            outputs = (loss,) + outputs
1152

thomwolf's avatar
thomwolf committed
1153
        return outputs  # return (loss), logits, mems, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1154

erenup's avatar
erenup committed
1155
1156
1157
@add_start_docstrings("""XLNet Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RACE/SWAG tasks. """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
1158
1159
class XLNetForMultipleChoice(XLNetPreTrainedModel):
    r"""
erenup's avatar
erenup committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to scores.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
        model = XLNetForMultipleChoice.from_pretrained('xlnet-base-cased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

    """
    def __init__(self, config):
        super(XLNetForMultipleChoice, self).__init__(config)

        self.transformer = XLNetModel(config)
        self.sequence_summary = SequenceSummary(config)
        self.logits_proj = nn.Linear(config.d_model, 1)

        self.apply(self.init_weights)

    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
                mems=None, perm_mask=None, target_mapping=None,
                labels=None, head_mask=None):
        num_choices = input_ids.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
erenup's avatar
erenup committed
1224
        flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

        transformer_outputs = self.transformer(flat_input_ids, token_type_ids=flat_token_type_ids,
                                               input_mask=flat_input_mask, attention_mask=flat_attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)


        output = transformer_outputs[0]

        output = self.sequence_summary(output)
        logits = self.logits_proj(output)
        reshaped_logits = logits.view(-1, num_choices)
        outputs = (reshaped_logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # return (loss), logits, mems, (hidden states), (attentions)


thomwolf's avatar
thomwolf committed
1247
1248
1249
@add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1250
class XLNetForQuestionAnswering(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
1264
1265
1266
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...).
            1.0 means token should be masked. 0.0 mean token is not masked.
thomwolf's avatar
thomwolf committed
1267
1268

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
1269
1270
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
1271
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1272
1273
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1274
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1275
1276
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1277
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1278
1279
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1280
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1281
1282
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1283
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1284
1285
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
1286
1287
1288
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
1289
1290
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
1291
1292
1293
1294
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1295
1296
1297
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1298
1299
1300

    Examples::

erenup's avatar
erenup committed
1301
        tokenizer =  XLNetTokenizer.from_pretrained('xlnet-large-cased')
wangfei's avatar
wangfei committed
1302
1303
1304
1305
1306
1307
        model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
1308

thomwolf's avatar
thomwolf committed
1309
    """
thomwolf's avatar
thomwolf committed
1310
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1311
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1312
1313
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1314

thomwolf's avatar
thomwolf committed
1315
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1316
1317
1318
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1319

thomwolf's avatar
thomwolf committed
1320
1321
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1322
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1323
                mems=None, perm_mask=None, target_mapping=None,
thomwolf's avatar
thomwolf committed
1324
1325
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
thomwolf's avatar
thomwolf committed
1326
1327
1328
1329
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1330
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1331
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1332

thomwolf's avatar
thomwolf committed
1333
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1334

thomwolf's avatar
thomwolf committed
1335
1336
1337
1338
1339
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1340

thomwolf's avatar
thomwolf committed
1341
1342
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1343

thomwolf's avatar
thomwolf committed
1344
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1345
1346
1347
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1348

thomwolf's avatar
thomwolf committed
1349
1350
1351
1352
1353
1354
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

1355
                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
thomwolf's avatar
thomwolf committed
1356
                total_loss += cls_loss * 0.5
1357
1358

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1359
1360
1361
1362
1363
1364
1365

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
1366
1367
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

1379
1380
            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)  # get the representation of START as weighted sum of hidden states
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)  # Shape (batch size,): one single `cls_logits` for each sample
thomwolf's avatar
thomwolf committed
1381
1382
1383

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

1384
1385
        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
1386
        return outputs