"tests/configs/ocr_ppocr_rec_mobile_params.txt" did not exist on "be8b7fdec9b418bd48ef3787d99abf3357a2920d"
run_clm.py 27.2 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Sylvain Gugger's avatar
Sylvain Gugger committed
21
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27

import logging
import math
import os
import sys
28
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
29
from dataclasses import dataclass, field
30
from itertools import chain
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
from typing import Optional

33
import datasets
34
import evaluate
35
import torch
36
from datasets import load_dataset
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
39
40
41
42
43
44
45
46
47
48

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
49
    is_torch_tpu_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
    set_seed,
)
52
from transformers.testing_utils import CaptureLogger
53
from transformers.trainer_utils import get_last_checkpoint
54
from transformers.utils import check_min_version, send_example_telemetry
55
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
56
57


58
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
59
check_min_version("4.32.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
60

61
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
62

Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
81
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
85
86
87
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
88
89
90
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
95
96
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
101
102
103
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
104
105
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
109
110
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
111
112
113
114
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
115
116
    token: str = field(
        default=None,
117
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
118
            "help": (
119
120
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
121
            )
122
123
        },
    )
124
125
126
127
128
129
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
130
131
132
133
134
135
136
137
138
139
    torch_dtype: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
                "dtype will be automatically derived from the model's weights."
            ),
            "choices": ["auto", "bfloat16", "float16", "float32"],
        },
    )
140
141
142
143
144
145
146
147
148
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded."
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
149

150
151
152
153
154
155
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
174
175
176
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
181
182
        },
    )
183
    max_eval_samples: Optional[int] = field(
184
185
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
189
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
190
191
        },
    )
192
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
193
194
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
195
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
200
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
205
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
206
207
208
209
210
211
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
214
215
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
216
    keep_linebreaks: bool = field(
217
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
218
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220

    def __post_init__(self):
221
222
223
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

Sylvain Gugger's avatar
Sylvain Gugger committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

248
249
250
251
252
253
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

254
255
256
257
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
258
259
    # Setup logging
    logging.basicConfig(
260
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
261
        datefmt="%m/%d/%Y %H:%M:%S",
262
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
263
    )
264

265
266
267
268
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

269
270
271
272
273
274
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
277
278

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
279
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
280
    )
281
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
298
299
300
301
302
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
303
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
304
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
305
306
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308
309
310
311
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
312
        raw_datasets = load_dataset(
313
314
315
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
316
            token=model_args.token,
317
            streaming=data_args.streaming,
318
319
320
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
321
322
323
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
324
                cache_dir=model_args.cache_dir,
325
                token=model_args.token,
326
                streaming=data_args.streaming,
327
            )
328
            raw_datasets["train"] = load_dataset(
329
330
331
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
332
                cache_dir=model_args.cache_dir,
333
                token=model_args.token,
334
                streaming=data_args.streaming,
335
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
    else:
        data_files = {}
338
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
341
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
342
            data_files["validation"] = data_args.validation_file
343
344
345
346
347
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
348
349
        if extension == "txt":
            extension = "text"
350
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
351
352
353
354
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
355
            token=model_args.token,
356
357
            **dataset_args,
        )
358
359
360
361
362
363
364
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
365
                token=model_args.token,
366
                **dataset_args,
367
368
369
370
371
372
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
373
                token=model_args.token,
374
                **dataset_args,
375
376
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
377
378
379
380
381
382
383
384
385
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

386
387
388
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
389
        "token": model_args.token,
390
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
391
    if model_args.config_name:
392
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
393
    elif model_args.model_name_or_path:
394
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
397
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
398
399
400
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
401
            logger.info(f"New config: {config}")
Sylvain Gugger's avatar
Sylvain Gugger committed
402

403
404
405
406
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
407
        "token": model_args.token,
408
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
409
    if model_args.tokenizer_name:
410
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
411
    elif model_args.model_name_or_path:
412
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414
415
416
417
418
419
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
420
421
422
423
424
        torch_dtype = (
            model_args.torch_dtype
            if model_args.torch_dtype in ["auto", None]
            else getattr(torch, model_args.torch_dtype)
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427
428
429
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
430
            revision=model_args.model_revision,
431
            token=model_args.token,
432
            torch_dtype=torch_dtype,
433
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
Sylvain Gugger's avatar
Sylvain Gugger committed
434
435
436
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
437
        n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
438
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
439

440
441
442
443
444
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Sylvain Gugger's avatar
Sylvain Gugger committed
445
446
447
448

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
449
        column_names = list(raw_datasets["train"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
450
    else:
451
        column_names = list(raw_datasets["validation"].features)
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
    text_column_name = "text" if "text" in column_names else column_names[0]

454
455
456
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
457
    def tokenize_function(examples):
458
459
460
461
462
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
465
466
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
467

468
    with training_args.main_process_first(desc="dataset map tokenization"):
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        if not data_args.streaming:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset",
            )
        else:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                remove_columns=column_names,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
484

485
    if data_args.block_size is None:
486
        block_size = tokenizer.model_max_length
487
        if block_size > 1024:
488
            logger.warning(
489
490
491
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
492
            )
493
            block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
494
    else:
495
        if data_args.block_size > tokenizer.model_max_length:
496
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
497
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
498
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
499
            )
500
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503
504

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
505
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Sylvain Gugger's avatar
Sylvain Gugger committed
506
        total_length = len(concatenated_examples[list(examples.keys())[0]])
507
508
509
        # We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.
        # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
        total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
524

525
    with training_args.main_process_first(desc="grouping texts together"):
526
527
528
529
530
531
532
533
534
535
536
537
538
        if not data_args.streaming:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {block_size}",
            )
        else:
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
539

540
541
542
543
544
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
545
546
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
547
548
549
550
551

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
552
        if data_args.max_eval_samples is not None:
553
554
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
555

556
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
557
558
559
560
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
561
562
            return logits.argmax(dim=-1)

563
        metric = evaluate.load("accuracy")
564
565
566
567
568
569
570
571
572

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
573
574
575
576
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
577
578
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
579
580
581
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
582
583
584
585
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
588
589
    )

    # Training
    if training_args.do_train:
590
591
592
593
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
594
595
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
596
597
        trainer.save_model()  # Saves the tokenizer too for easy upload

598
        metrics = train_result.metrics
599

600
601
602
603
604
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

605
606
607
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
608

Sylvain Gugger's avatar
Sylvain Gugger committed
609
610
611
612
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

613
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
614

615
616
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
617
618
619
620
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
621
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
622

623
624
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
625

626
627
628
629
630
631
632
633
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
634

635
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
636
        trainer.push_to_hub(**kwargs)
637
638
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
639

Sylvain Gugger's avatar
Sylvain Gugger committed
640
641
642
643
644
645
646
647

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()