run_glue.py 27.8 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
import warnings
24
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
25
from typing import Optional
thomwolf's avatar
thomwolf committed
26

27
import datasets
28
import evaluate
thomwolf's avatar
thomwolf committed
29
import numpy as np
30
from datasets import load_dataset
thomwolf's avatar
thomwolf committed
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
import transformers
33
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
36
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
37
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    EvalPrediction,
39
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
41
    Trainer,
42
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
44
    set_seed,
45
)
46
from transformers.trainer_utils import get_last_checkpoint
47
from transformers.utils import check_min_version, send_example_telemetry
48
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
49

Aymeric Augustin's avatar
Aymeric Augustin committed
50

51
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
52
check_min_version("4.40.0.dev0")
Lysandre's avatar
Lysandre committed
53

54
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55

Sylvain Gugger's avatar
Sylvain Gugger committed
56
57
58
59
60
61
62
63
64
65
66
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
67
68
69

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
70

Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
85
86
87
88
89
90
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
    max_seq_length: int = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
97
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
101
102
103
104
105
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
109
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
        },
    )
112
113
114
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
117
118
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
119
120
        },
    )
121
    max_eval_samples: Optional[int] = field(
122
123
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
126
127
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
128
129
        },
    )
130
    max_predict_samples: Optional[int] = field(
131
132
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
133
134
135
136
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
137
138
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
139
140
141
142
143
144
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
145
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149
150
151

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
152
153
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
154
        elif self.train_file is None or self.validation_file is None:
155
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
156
        else:
157
158
159
160
161
162
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164


165
166
167
168
169
170
171
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
172
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
173
    )
174
175
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
176
    )
177
178
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
179
    )
180
    cache_dir: Optional[str] = field(
181
182
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
183
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
187
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
188
189
190
191
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
192
193
    token: str = field(
        default=None,
194
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
195
            "help": (
196
197
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
198
            )
199
200
        },
    )
201
202
203
    use_auth_token: bool = field(
        default=None,
        metadata={
204
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
205
206
        },
    )
207
208
209
210
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
211
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
212
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
213
214
215
216
                "execute code present on the Hub on your local machine."
            )
        },
    )
217
218
219
220
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
221
222


223
def main():
Julien Chaumond's avatar
Julien Chaumond committed
224
225
226
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
227

228
229
230
231
232
233
234
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
235

236
    if model_args.use_auth_token is not None:
237
238
239
240
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
241
242
243
244
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

245
246
247
248
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args)

thomwolf's avatar
thomwolf committed
249
    # Setup logging
250
    logging.basicConfig(
251
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
252
        datefmt="%m/%d/%Y %H:%M:%S",
253
        handlers=[logging.StreamHandler(sys.stdout)],
254
    )
255

256
257
258
259
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

260
261
262
263
264
265
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267

    # Log on each process the small summary:
268
    logger.warning(
269
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
270
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
271
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
272
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
289
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
290
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
291

Sylvain Gugger's avatar
Sylvain Gugger committed
292
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
293
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
294
295
296
297
298
299
300
301
302
303
304
305
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
306
        raw_datasets = load_dataset(
307
            "nyu-mll/glue",
308
309
            data_args.task_name,
            cache_dir=model_args.cache_dir,
310
            token=model_args.token,
311
        )
312
313
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
314
        raw_datasets = load_dataset(
315
316
317
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
318
            token=model_args.token,
319
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
320
    else:
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
343
344
345
346
            raw_datasets = load_dataset(
                "csv",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
347
                token=model_args.token,
348
            )
349
350
        else:
            # Loading a dataset from local json files
351
352
353
354
            raw_datasets = load_dataset(
                "json",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
355
                token=model_args.token,
356
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
357
    # See more about loading any type of standard or custom dataset at
358
    # https://huggingface.co/docs/datasets/loading_datasets.
Sylvain Gugger's avatar
Sylvain Gugger committed
359
360
361
362
363

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
364
            label_list = raw_datasets["train"].features["label"].names
Sylvain Gugger's avatar
Sylvain Gugger committed
365
366
367
368
369
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
370
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
Sylvain Gugger's avatar
Sylvain Gugger committed
371
372
373
374
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
375
            # https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.unique
376
            label_list = raw_datasets["train"].unique("label")
Sylvain Gugger's avatar
Sylvain Gugger committed
377
378
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
379
380

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
381
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
382
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
383
    # download model & vocab.
384
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
385
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
386
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
387
388
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
389
        revision=model_args.model_revision,
390
        token=model_args.token,
391
        trust_remote_code=model_args.trust_remote_code,
392
    )
393
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
394
395
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
396
        use_fast=model_args.use_fast_tokenizer,
397
        revision=model_args.model_revision,
398
        token=model_args.token,
399
        trust_remote_code=model_args.trust_remote_code,
400
    )
401
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
402
403
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
404
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
405
        cache_dir=model_args.cache_dir,
406
        revision=model_args.model_revision,
407
        token=model_args.token,
408
        trust_remote_code=model_args.trust_remote_code,
409
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
410
    )
thomwolf's avatar
thomwolf committed
411

412
    # Preprocessing the raw_datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414
415
416
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
417
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
432

Sylvain Gugger's avatar
Sylvain Gugger committed
433
434
435
436
437
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
438
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
439
440
441
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
442
        if sorted(label_name_to_id.keys()) == sorted(label_list):
443
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
444
        else:
445
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
446
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
447
                f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}."
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
                "\nIgnoring the model labels as a result.",
            )
450
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
451
        label_to_id = {v: i for i, v in enumerate(label_list)}
452

453
454
455
    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
456
457
458
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}
459

460
    if data_args.max_seq_length > tokenizer.model_max_length:
461
        logger.warning(
462
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
463
464
465
466
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
467
468
469
470
471
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
472
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
473
474
475

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
476
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
477
478
        return result

479
480
481
482
483
484
485
    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
486
    if training_args.do_train:
487
        if "train" not in raw_datasets:
488
            raise ValueError("--do_train requires a train dataset")
489
        train_dataset = raw_datasets["train"]
490
        if data_args.max_train_samples is not None:
491
492
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
493

494
    if training_args.do_eval:
495
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
496
            raise ValueError("--do_eval requires a validation dataset")
497
        eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
498
        if data_args.max_eval_samples is not None:
499
500
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
501
502

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
503
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
504
            raise ValueError("--do_predict requires a test dataset")
505
        predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
506
        if data_args.max_predict_samples is not None:
507
508
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
509
510

    # Log a few random samples from the training set:
511
512
513
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
514
515
516

    # Get the metric function
    if data_args.task_name is not None:
517
        metric = evaluate.load("glue", data_args.task_name, cache_dir=model_args.cache_dir)
518
    elif is_regression:
519
        metric = evaluate.load("mse", cache_dir=model_args.cache_dir)
520
    else:
521
        metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
522
523
524
525
526
527

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
528
529
530
531
        result = metric.compute(predictions=preds, references=p.label_ids)
        if len(result) > 1:
            result["combined_score"] = np.mean(list(result.values())).item()
        return result
thomwolf's avatar
thomwolf committed
532

533
534
    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
535
536
537
538
539
540
541
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
542
543
544
545
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
546
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
547
548
549
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
550
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
551
    )
thomwolf's avatar
thomwolf committed
552

thomwolf's avatar
thomwolf committed
553
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
554
    if training_args.do_train:
555
        checkpoint = None
556
557
558
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
559
560
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
561
        metrics = train_result.metrics
562
563
564
565
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
566

Sylvain Gugger's avatar
Sylvain Gugger committed
567
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
568

569
570
571
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
572

thomwolf's avatar
thomwolf committed
573
    # Evaluation
574
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
575
576
577
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
578
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
579
580
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
581
            tasks.append("mnli-mm")
582
583
584
585
586
            valid_mm_dataset = raw_datasets["validation_mismatched"]
            if data_args.max_eval_samples is not None:
                max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples)
                valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples))
            eval_datasets.append(valid_mm_dataset)
587
            combined = {}
Julien Chaumond's avatar
Julien Chaumond committed
588

Sylvain Gugger's avatar
Sylvain Gugger committed
589
        for eval_dataset, task in zip(eval_datasets, tasks):
590
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
591

592
593
594
595
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
596

597
598
            if task == "mnli-mm":
                metrics = {k + "_mm": v for k, v in metrics.items()}
599
            if task is not None and "mnli" in task:
600
601
                combined.update(metrics)

602
            trainer.log_metrics("eval", metrics)
603
            trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
thomwolf's avatar
thomwolf committed
604

605
    if training_args.do_predict:
606
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
607
608
609

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
610
        predict_datasets = [predict_dataset]
611
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
612
            tasks.append("mnli-mm")
613
            predict_datasets.append(raw_datasets["test_mismatched"])
614

615
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
616
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
617
            predict_dataset = predict_dataset.remove_columns("label")
618
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
619
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
620

621
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
622
            if trainer.is_world_process_zero():
623
624
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
625
626
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
627
628
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
629
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
630
631
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
632

633
634
635
636
637
638
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
Sylvain Gugger's avatar
Sylvain Gugger committed
639

640
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
641
        trainer.push_to_hub(**kwargs)
642
643
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
644

thomwolf's avatar
thomwolf committed
645

Lysandre Debut's avatar
Lysandre Debut committed
646
647
648
649
650
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
651
652
if __name__ == "__main__":
    main()