run_glue.py 26.1 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25

26
import datasets
thomwolf's avatar
thomwolf committed
27
import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
import transformers
31
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
35
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    EvalPrediction,
37
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
39
    Trainer,
40
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
42
    set_seed,
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
47

Aymeric Augustin's avatar
Aymeric Augustin committed
48

49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
50
check_min_version("4.20.0.dev0")
Lysandre's avatar
Lysandre committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
53

Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
58
59
60
61
62
63
64
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
65
66
67

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
68

Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
83
84
85
86
87
88
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
    max_seq_length: int = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
92
93
94
95
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
101
102
103
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
104
105
106
107
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
        },
    )
110
111
112
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
115
116
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
117
118
        },
    )
119
    max_eval_samples: Optional[int] = field(
120
121
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
126
127
        },
    )
128
    max_predict_samples: Optional[int] = field(
129
130
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
135
136
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
140
141
142
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
143
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147
148
149

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
150
151
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
152
        elif self.train_file is None or self.validation_file is None:
153
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
154
        else:
155
156
157
158
159
160
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162


163
164
165
166
167
168
169
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
170
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
171
    )
172
173
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
174
    )
175
176
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
177
    )
178
    cache_dir: Optional[str] = field(
179
180
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
181
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
186
187
188
189
190
191
192
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
196
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
197
198
        },
    )
199
200
201
202
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
203
204


205
def main():
Julien Chaumond's avatar
Julien Chaumond committed
206
207
208
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
209

210
211
212
213
214
215
216
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
217
218

    # Setup logging
219
    logging.basicConfig(
220
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
221
        datefmt="%m/%d/%Y %H:%M:%S",
222
        handlers=[logging.StreamHandler(sys.stdout)],
223
    )
224
225
226
227
228
229
230

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232

    # Log on each process the small summary:
233
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
236
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
237
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
254
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
255
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
256

Sylvain Gugger's avatar
Sylvain Gugger committed
257
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
258
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
259
260
261
262
263
264
265
266
267
268
269
270
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
271
272
273
274
275
276
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
277
278
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
279
        raw_datasets = load_dataset(
280
281
282
283
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
284
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
285
    else:
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
308
309
310
311
312
313
            raw_datasets = load_dataset(
                "csv",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
314
315
        else:
            # Loading a dataset from local json files
316
317
318
319
320
321
            raw_datasets = load_dataset(
                "json",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
322
323
324
325
326
327
328
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
329
            label_list = raw_datasets["train"].features["label"].names
Sylvain Gugger's avatar
Sylvain Gugger committed
330
331
332
333
334
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
335
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
338
339
340
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
341
            label_list = raw_datasets["train"].unique("label")
Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
344
345

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
346
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
347
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
348
    # download model & vocab.
349
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
350
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
351
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
352
353
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
354
355
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
356
    )
357
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
358
359
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
360
        use_fast=model_args.use_fast_tokenizer,
361
362
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
363
    )
364
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
365
366
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
367
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
368
        cache_dir=model_args.cache_dir,
369
370
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
371
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
372
    )
thomwolf's avatar
thomwolf committed
373

374
    # Preprocessing the raw_datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
379
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
394

Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
397
398
399
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
400
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
401
402
403
404
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
405
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
406
        else:
407
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
408
409
410
411
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
412
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
413
        label_to_id = {v: i for i, v in enumerate(label_list)}
414

415
416
417
    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
418
419
420
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}
421

422
    if data_args.max_seq_length > tokenizer.model_max_length:
423
        logger.warning(
424
425
426
427
428
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
431
432
433
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
434
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
435
436
437

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
438
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
439
440
        return result

441
442
443
444
445
446
447
    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
448
    if training_args.do_train:
449
        if "train" not in raw_datasets:
450
            raise ValueError("--do_train requires a train dataset")
451
        train_dataset = raw_datasets["train"]
452
        if data_args.max_train_samples is not None:
453
454
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
455

456
    if training_args.do_eval:
457
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
458
            raise ValueError("--do_eval requires a validation dataset")
459
        eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
460
        if data_args.max_eval_samples is not None:
461
462
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
463
464

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
465
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
466
            raise ValueError("--do_predict requires a test dataset")
467
        predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
468
        if data_args.max_predict_samples is not None:
469
470
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
471
472

    # Log a few random samples from the training set:
473
474
475
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
476
477
478
479

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
480
481
    else:
        metric = load_metric("accuracy")
Sylvain Gugger's avatar
Sylvain Gugger committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
497

498
499
    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
500
501
502
503
504
505
506
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
507
508
509
510
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
511
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
512
513
514
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
515
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
516
    )
thomwolf's avatar
thomwolf committed
517

thomwolf's avatar
thomwolf committed
518
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
519
    if training_args.do_train:
520
        checkpoint = None
521
522
523
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
524
525
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
526
        metrics = train_result.metrics
527
528
529
530
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
531

Sylvain Gugger's avatar
Sylvain Gugger committed
532
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
533

534
535
536
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
537

thomwolf's avatar
thomwolf committed
538
    # Evaluation
539
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
540
541
542
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
543
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
544
545
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
546
            tasks.append("mnli-mm")
547
            eval_datasets.append(raw_datasets["validation_mismatched"])
548
            combined = {}
Julien Chaumond's avatar
Julien Chaumond committed
549

Sylvain Gugger's avatar
Sylvain Gugger committed
550
        for eval_dataset, task in zip(eval_datasets, tasks):
551
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
552

553
554
555
556
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
557

558
559
            if task == "mnli-mm":
                metrics = {k + "_mm": v for k, v in metrics.items()}
560
            if task is not None and "mnli" in task:
561
562
                combined.update(metrics)

563
            trainer.log_metrics("eval", metrics)
564
            trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
thomwolf's avatar
thomwolf committed
565

566
    if training_args.do_predict:
567
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
568
569
570

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
571
        predict_datasets = [predict_dataset]
572
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
573
            tasks.append("mnli-mm")
574
            predict_datasets.append(raw_datasets["test_mismatched"])
575

576
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
577
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
578
            predict_dataset = predict_dataset.remove_columns("label")
579
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
580
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
581

582
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
583
            if trainer.is_world_process_zero():
584
585
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
586
587
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
588
589
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
590
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
591
592
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
593

594
595
596
597
598
599
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
Sylvain Gugger's avatar
Sylvain Gugger committed
600

601
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
602
        trainer.push_to_hub(**kwargs)
603
604
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
605

thomwolf's avatar
thomwolf committed
606

Lysandre Debut's avatar
Lysandre Debut committed
607
608
609
610
611
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
612
613
if __name__ == "__main__":
    main()