run_glue.py 23.8 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25
26

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
27
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
import transformers
30
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
34
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
35
    EvalPrediction,
36
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
37
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
38
    Trainer,
39
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
41
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint
44
from transformers.utils import check_min_version
Sylvain Gugger's avatar
Sylvain Gugger committed
45

Aymeric Augustin's avatar
Aymeric Augustin committed
46

47
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
48
check_min_version("4.7.0.dev0")
49

Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
52
53
54
55
56
57
58
59
60
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
61
62
63

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
64

Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
79
80
81
82
83
84
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
102
103
104
105
106
107
108
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
109
    max_eval_samples: Optional[int] = field(
110
111
        default=None,
        metadata={
112
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
113
114
115
            "value if set."
        },
    )
116
    max_predict_samples: Optional[int] = field(
117
118
        default=None,
        metadata={
119
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
120
121
122
            "value if set."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
125
126
127
128
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
129
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
132
133
134
135

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
136
137
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        elif self.train_file is None or self.validation_file is None:
139
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
140
        else:
141
142
143
144
145
146
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148


149
150
151
152
153
154
155
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
156
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
157
    )
158
159
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
160
    )
161
162
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
163
    )
164
    cache_dir: Optional[str] = field(
165
166
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
167
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
170
171
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
172
173
174
175
176
177
178
179
180
181
182
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
183
184


185
def main():
Julien Chaumond's avatar
Julien Chaumond committed
186
187
188
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
189

190
191
192
193
194
195
196
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
197

198
199
200
201
202
203
204
205
206
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
207
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
208
209
210
211
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
thomwolf's avatar
thomwolf committed
212

thomwolf's avatar
thomwolf committed
213
    # Setup logging
214
215
216
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
217
        handlers=[logging.StreamHandler(sys.stdout)],
218
    )
219
    logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221

    # Log on each process the small summary:
222
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
225
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
226
    # Set the verbosity to info of the Transformers logger (on main process only):
227
    if training_args.should_log:
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        transformers.utils.logging.set_verbosity_info()
229
230
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
231
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
232

Sylvain Gugger's avatar
Sylvain Gugger committed
233
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
234
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
235

Sylvain Gugger's avatar
Sylvain Gugger committed
236
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
237
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239
240
241
242
243
244
245
246
247
248
249
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
250
        datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir)
251
252
253
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
254
    else:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
277
            datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
278
279
        else:
            # Loading a dataset from local json files
280
            datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
303
304

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
305
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
306
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
307
    # download model & vocab.
308
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
309
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
310
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
311
312
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
313
314
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
315
    )
316
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
317
318
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
319
        use_fast=model_args.use_fast_tokenizer,
320
321
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
322
    )
323
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
324
325
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
326
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
327
        cache_dir=model_args.cache_dir,
328
329
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
330
    )
thomwolf's avatar
thomwolf committed
331

Sylvain Gugger's avatar
Sylvain Gugger committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
352

Sylvain Gugger's avatar
Sylvain Gugger committed
353
354
355
356
357
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
358
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
359
360
361
362
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
363
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
364
        else:
365
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368
369
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
370
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
371
        label_to_id = {v: i for i, v in enumerate(label_list)}
372

373
    if data_args.max_seq_length > tokenizer.model_max_length:
374
        logger.warning(
375
376
377
378
379
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
382
383
384
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
385
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
388

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
389
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
390
391
        return result

392
    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)
393
394
395
396
397
398
    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
399

400
401
402
403
    if training_args.do_eval:
        if "validation" not in datasets and "validation_matched" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
404
405
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
406
407
408
409

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
        if "test" not in datasets and "test_matched" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
410
411
412
        predict_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414

    # Log a few random samples from the training set:
415
416
417
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
420
421

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
422
423
    else:
        metric = load_metric("accuracy")
Sylvain Gugger's avatar
Sylvain Gugger committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
439

440
441
442
443
444
445
446
447
    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
448
449
450
451
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
452
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
453
454
455
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
456
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
457
    )
thomwolf's avatar
thomwolf committed
458

thomwolf's avatar
thomwolf committed
459
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
460
    if training_args.do_train:
461
        checkpoint = None
462
463
464
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
465
466
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
467
        metrics = train_result.metrics
468
469
470
471
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
472

Sylvain Gugger's avatar
Sylvain Gugger committed
473
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
474

475
476
477
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
478

thomwolf's avatar
thomwolf committed
479
    # Evaluation
480
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
481
482
483
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
484
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
485
486
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
487
488
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])
Julien Chaumond's avatar
Julien Chaumond committed
489

Sylvain Gugger's avatar
Sylvain Gugger committed
490
        for eval_dataset, task in zip(eval_datasets, tasks):
491
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
492

493
494
495
496
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
497

498
499
            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)
thomwolf's avatar
thomwolf committed
500

501
    if training_args.do_predict:
502
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
506
        predict_datasets = [predict_dataset]
507
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
508
            tasks.append("mnli-mm")
509
            predict_datasets.append(datasets["test_mismatched"])
510

511
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
512
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
513
514
            predict_dataset.remove_columns_("label")
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
515
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
516

517
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
518
            if trainer.is_world_process_zero():
519
520
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
521
522
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
523
524
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
525
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
526
527
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
528

Sylvain Gugger's avatar
Sylvain Gugger committed
529
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
530
531
532
533
534
535
536
537
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tags": "text-classification"}
        if data_args.task_name is not None:
            kwargs["language"] = "en"
            kwargs["dataset_tags"] = "glue"
            kwargs["dataset_args"] = data_args.task_name
            kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
538

thomwolf's avatar
thomwolf committed
539

Lysandre Debut's avatar
Lysandre Debut committed
540
541
542
543
544
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
545
546
if __name__ == "__main__":
    main()