run_glue.py 24.2 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25
26

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
27
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
import transformers
30
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
34
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
35
    EvalPrediction,
36
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
37
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
38
    Trainer,
39
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
41
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint
44
from transformers.utils import check_min_version
45
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
46

Aymeric Augustin's avatar
Aymeric Augustin committed
47

48
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
49
check_min_version("4.9.0.dev0")
Lysandre's avatar
Lysandre committed
50

51
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
52

Sylvain Gugger's avatar
Sylvain Gugger committed
53
54
55
56
57
58
59
60
61
62
63
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
64
65
66

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
67

Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
82
83
84
85
86
87
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
105
106
107
108
109
110
111
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
112
    max_eval_samples: Optional[int] = field(
113
114
        default=None,
        metadata={
115
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
116
117
118
            "value if set."
        },
    )
119
    max_predict_samples: Optional[int] = field(
120
121
        default=None,
        metadata={
122
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
123
124
125
            "value if set."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
126
127
128
129
130
131
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
132
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
133
134
135
136
137
138

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
139
140
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
141
        elif self.train_file is None or self.validation_file is None:
142
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
143
        else:
144
145
146
147
148
149
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151


152
153
154
155
156
157
158
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
159
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
160
    )
161
162
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
163
    )
164
165
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
166
    )
167
    cache_dir: Optional[str] = field(
168
169
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
170
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
174
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
175
176
177
178
179
180
181
182
183
184
185
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
186
187


188
def main():
Julien Chaumond's avatar
Julien Chaumond committed
189
190
191
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
192

193
194
195
196
197
198
199
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
200
201

    # Setup logging
202
    logging.basicConfig(
203
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
204
        datefmt="%m/%d/%Y %H:%M:%S",
205
        handlers=[logging.StreamHandler(sys.stdout)],
206
    )
207
    logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209

    # Log on each process the small summary:
210
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
213
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
214
    # Set the verbosity to info of the Transformers logger (on main process only):
215
    if training_args.should_log:
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        transformers.utils.logging.set_verbosity_info()
217
218
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
219
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
236
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
237
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
238

Sylvain Gugger's avatar
Sylvain Gugger committed
239
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
240
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243
244
245
246
247
248
249
250
251
252
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
253
        datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir)
254
255
256
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
257
    else:
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
280
            datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
281
282
        else:
            # Loading a dataset from local json files
283
            datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
306
307

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
308
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
309
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
310
    # download model & vocab.
311
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
312
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
313
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
314
315
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
316
317
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
318
    )
319
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
320
321
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
322
        use_fast=model_args.use_fast_tokenizer,
323
324
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
325
    )
326
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
327
328
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
329
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
330
        cache_dir=model_args.cache_dir,
331
332
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
333
    )
thomwolf's avatar
thomwolf committed
334

Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
355

Sylvain Gugger's avatar
Sylvain Gugger committed
356
357
358
359
360
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
361
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
362
363
364
365
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
366
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
367
        else:
368
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371
372
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
373
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
374
        label_to_id = {v: i for i, v in enumerate(label_list)}
375

376
377
378
379
    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}

380
    if data_args.max_seq_length > tokenizer.model_max_length:
381
        logger.warning(
382
383
384
385
386
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
387
388
389
390
391
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
392
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
396
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
397
398
        return result

399
400
401
402
403
404
    datasets = datasets.map(
        preprocess_function,
        batched=True,
        load_from_cache_file=not data_args.overwrite_cache,
        desc="Running tokenizer on dataset",
    )
405
406
407
408
409
410
    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
411

412
413
414
415
    if training_args.do_eval:
        if "validation" not in datasets and "validation_matched" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
416
417
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
418
419
420
421

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
        if "test" not in datasets and "test_matched" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
422
423
424
        predict_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426

    # Log a few random samples from the training set:
427
428
429
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
430
431
432
433

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
434
435
    else:
        metric = load_metric("accuracy")
Sylvain Gugger's avatar
Sylvain Gugger committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
451

452
453
454
455
456
457
458
459
    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
460
461
462
463
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
464
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
468
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
469
    )
thomwolf's avatar
thomwolf committed
470

thomwolf's avatar
thomwolf committed
471
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
472
    if training_args.do_train:
473
        checkpoint = None
474
475
476
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
477
478
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
479
        metrics = train_result.metrics
480
481
482
483
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
484

Sylvain Gugger's avatar
Sylvain Gugger committed
485
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
486

487
488
489
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
490

thomwolf's avatar
thomwolf committed
491
    # Evaluation
492
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
493
494
495
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
496
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
497
498
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
499
500
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])
Julien Chaumond's avatar
Julien Chaumond committed
501

Sylvain Gugger's avatar
Sylvain Gugger committed
502
        for eval_dataset, task in zip(eval_datasets, tasks):
503
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
504

505
506
507
508
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
509

510
511
            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)
thomwolf's avatar
thomwolf committed
512

513
    if training_args.do_predict:
514
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
515
516
517

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
518
        predict_datasets = [predict_dataset]
519
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
520
            tasks.append("mnli-mm")
521
            predict_datasets.append(datasets["test_mismatched"])
522

523
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
524
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
525
526
            predict_dataset.remove_columns_("label")
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
527
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
528

529
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
530
            if trainer.is_world_process_zero():
531
532
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
533
534
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
535
536
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
537
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
538
539
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
540

Sylvain Gugger's avatar
Sylvain Gugger committed
541
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
542
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
545
546
547
548
549
        if data_args.task_name is not None:
            kwargs["language"] = "en"
            kwargs["dataset_tags"] = "glue"
            kwargs["dataset_args"] = data_args.task_name
            kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
550

thomwolf's avatar
thomwolf committed
551

Lysandre Debut's avatar
Lysandre Debut committed
552
553
554
555
556
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
557
558
if __name__ == "__main__":
    main()