modeling_gpt2.py 32.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
34
35
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
40
41
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
42

43
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
44
45
46
47
48
49
50
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
51
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
52
53
54
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
55
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
56
57
58
59
60
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
61
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
62
63
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
64
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
65
66

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
67
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
68
69
70
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
71
72
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
79
80
81
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
82
83
84
85
86
87
88
89
90
91
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
92
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
93
94
95
96
97
98
99
100
101
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
102
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
103
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
104
105
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
106
107
108
109
110
111
112
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
113

thomwolf's avatar
thomwolf committed
114
115
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
116
117
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
118
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
119

120
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
121
122
        if len(heads) == 0:
            return
123
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
124
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
125
        for head in heads:
126
127
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
128
129
130
131
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
132

133
134
135
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
136

137
138
139
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
140
        self.pruned_heads = self.pruned_heads.union(heads)
141

142
    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
143
144
145
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
146
147
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
148
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
149

150
151
152
153
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

thomwolf's avatar
thomwolf committed
154
        w = nn.Softmax(dim=-1)(w)
155
        w = self.attn_dropout(w)
156
157
158
159
160

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
161
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
162
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
163
164
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
165
166
167
168
169
170
171
172
173
174

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
175
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
176
        else:
thomwolf's avatar
thomwolf committed
177
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
178

179
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
180
181
182
183
184
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
185
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
186
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
187
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
188
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
189
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
190

191
        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
192
        a = attn_outputs[0]
193

thomwolf's avatar
thomwolf committed
194
195
        a = self.merge_heads(a)
        a = self.c_proj(a)
196
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
197
198
199

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
200
201
202
203
204
205
206
207
208


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
209
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
210
211
212
213

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
214
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
215
216
217


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
218
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
219
220
        super(Block, self).__init__()
        nx = config.n_embd
221
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
222
        self.attn = Attention(nx, n_ctx, config, scale)
223
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
224
225
        self.mlp = MLP(4 * nx, config)

226
227
228
229
230
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x),
                                layer_past=layer_past,
                                attention_mask=attention_mask,
                                head_mask=head_mask)
thomwolf's avatar
thomwolf committed
231
232
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
233
        x = x + a
thomwolf's avatar
thomwolf committed
234
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
235
        x = x + m
thomwolf's avatar
thomwolf committed
236
237
238

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
239
240


241
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
242
243
244
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
245
    config_class = GPT2Config
246
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
247
248
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
249

250
251
252
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

253
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
254
255
        """ Initialize the weights.
        """
256
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
257
258
259
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
260
261
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
262
        elif isinstance(module, nn.LayerNorm):
thomwolf's avatar
thomwolf committed
263
264
265
266
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
283
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
284
285
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
286
287
"""

thomwolf's avatar
thomwolf committed
288
GPT2_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
289
290
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
291
292
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
293
            Indices can be obtained using :class:`pytorch_transformers.GPT2Tokenizer`.
thomwolf's avatar
thomwolf committed
294
295
296
297
298
299
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
300
301
302
303
304
305
306
307
308
309
310
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
311
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
312
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
313
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
314
315
316
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

Julien Chaumond's avatar
Julien Chaumond committed
317
@add_start_docstrings("The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
318
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
319
class GPT2Model(GPT2PreTrainedModel):
320
    r"""
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
332
333
334
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
335
336
337

    Examples::

338
339
340
341
342
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
343
344

    """
thomwolf's avatar
thomwolf committed
345
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
346
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
347
348
349
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
350
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
351
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
352
        self.drop = nn.Dropout(config.embd_pdrop)
353
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
354
        self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
355

356
        self.init_weights()
thomwolf's avatar
thomwolf committed
357

thomwolf's avatar
thomwolf committed
358
359
    def _resize_token_embeddings(self, new_num_tokens):
        self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
thomwolf's avatar
thomwolf committed
360
        return self.wte
thomwolf's avatar
thomwolf committed
361

thomwolf's avatar
thomwolf committed
362
    def _prune_heads(self, heads_to_prune):
363
364
365
366
367
368
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

369
    def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
370
371
372
373
374
375
376
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

thomwolf's avatar
thomwolf committed
377
        if past is None:
thomwolf's avatar
thomwolf committed
378
            past_length = 0
thomwolf's avatar
thomwolf committed
379
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
380
        else:
thomwolf's avatar
thomwolf committed
381
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
382
383
384
385
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

386
387
        # Attention mask.
        if attention_mask is not None:
388
            attention_mask = attention_mask.view(-1, input_shape[-1])
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

404
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
405
        # 1.0 in head_mask indicate we keep the head
406
        # attention_probs has shape bsz x n_heads x N x N
407
        # head_mask has shape n_layer x batch x n_heads x N x N
408
409
        if head_mask is not None:
            if head_mask.dim() == 1:
410
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
411
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
412
            elif head_mask.dim() == 2:
413
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
414
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
415
416
        else:
            head_mask = [None] * self.config.n_layer
417

thomwolf's avatar
thomwolf committed
418
419
420
421
422
423
424
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
425
426
        hidden_states = self.drop(hidden_states)

427
428
        output_shape = input_shape + (hidden_states.size(-1),)

429
        presents = ()
thomwolf's avatar
thomwolf committed
430
        all_attentions = []
431
        all_hidden_states = ()
432
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
433
            if self.output_hidden_states:
434
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
435

436
            outputs = block(hidden_states,
thomwolf's avatar
thomwolf committed
437
                            layer_past=layer_past,
438
439
440
                            attention_mask=attention_mask,
                            head_mask=head_mask[i])

thomwolf's avatar
thomwolf committed
441
            hidden_states, present = outputs[:2]
442
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
443
444
445
446

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
447
        hidden_states = self.ln_f(hidden_states)
448

thomwolf's avatar
thomwolf committed
449
450
451
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
452
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
453

454
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
455
        if self.output_hidden_states:
456
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
457
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
458
459
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
460
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
461
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
462
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
463
464


thomwolf's avatar
thomwolf committed
465
@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
466
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
467
class GPT2LMHeadModel(GPT2PreTrainedModel):
468
    r"""
thomwolf's avatar
thomwolf committed
469
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
470
471
472
473
474
475
476
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
477
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
478
479
480
481
482
483
484
485
486
487
488
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
489
490
491
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
492
493
494

    Examples::

thomwolf's avatar
thomwolf committed
495
496
497
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

498
499
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
500

501
502
503
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
thomwolf's avatar
thomwolf committed
504
505

    """
thomwolf's avatar
thomwolf committed
506
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
507
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
508
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
509
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
510

511
        self.init_weights()
thomwolf's avatar
thomwolf committed
512
        self.tie_weights()
513

thomwolf's avatar
thomwolf committed
514
515
516
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
thomwolf's avatar
thomwolf committed
517
        """
thomwolf's avatar
thomwolf committed
518
519
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
520

521
522
523
524
525
526
527
528
    def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               past=past,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
529
        hidden_states = transformer_outputs[0]
530

thomwolf's avatar
thomwolf committed
531
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
532

533
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
534
        if labels is not None:
535
            # Shift so that tokens < n predict n
536
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
537
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
538
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
539
            loss_fct = CrossEntropyLoss(ignore_index=-1)
540
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
541
                            shift_labels.view(-1))
542
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
543
544

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
545
546


thomwolf's avatar
thomwolf committed
547
548
549
@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
550
the classification head takes as input the input of a specified classification token index in the input sequence).
551
""", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
552
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
553
    r"""
thomwolf's avatar
thomwolf committed
554
        **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
thomwolf's avatar
thomwolf committed
555
556
557
558
559
560
561
562
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
563
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
564
565
566
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
thomwolf's avatar
thomwolf committed
567

thomwolf's avatar
thomwolf committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
585
586
587
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
588
589
590

    Examples::

591
592
593
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
594
595
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
596
597
598
599
600
601
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
thomwolf's avatar
thomwolf committed
602
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
thomwolf's avatar
thomwolf committed
603
604
605
606
607
608
609
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
610
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
611
612

    """
thomwolf's avatar
thomwolf committed
613
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
614
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
615
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
616
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
617
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
618

619
        self.init_weights()
620
        self.tie_weights()
thomwolf's avatar
thomwolf committed
621

thomwolf's avatar
thomwolf committed
622
623
624
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
625
        """
thomwolf's avatar
thomwolf committed
626
627
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
628

629
630
631
632
633
634
635
636
637
    def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                mc_token_ids=None, lm_labels=None, mc_labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               past=past,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               head_mask=head_mask)

thomwolf's avatar
thomwolf committed
638
        hidden_states = transformer_outputs[0]
639

thomwolf's avatar
thomwolf committed
640
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
641
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
642

643
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
644
645
646
647
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
648
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
649
        if lm_labels is not None:
650
651
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
652
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
653
654
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
655
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
656
657

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)