modeling_gpt2.py 36.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
34
35
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary,
                             add_start_docstrings)
thomwolf's avatar
thomwolf committed
36
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37
38
39

logger = logging.getLogger(__name__)

40
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
41
42
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin"}
43
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
thomwolf's avatar
thomwolf committed
44
45
                                      "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json",
                                      "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-config.json"}
thomwolf's avatar
thomwolf committed
46

47
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
48
49
50
51
52
53
54
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
55
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
56
57
58
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
59
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
60
61
62
63
64
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
65
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
66
67
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
68
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
69
70

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
71
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
72
73
74
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
75
76
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
83
84
85
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
86
87
88
89
90
91
92
93
94
95
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
96
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
97
98
99
100
101
102
103
104
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


105
class GPT2Config(PretrainedConfig):
thomwolf's avatar
thomwolf committed
106
    """Configuration class to store the configuration of a `GPT2Model`.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
thomwolf's avatar
thomwolf committed
124
    """
125
    pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
126
127
128

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
129
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
130
131
132
133
134
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
135
136
137
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
138
139
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
140
141

        num_labels=1,
thomwolf's avatar
thomwolf committed
142
        summary_type='cls_index',
thomwolf's avatar
thomwolf committed
143
144
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
145
        summary_proj_to_labels=True,
146
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
147
        **kwargs
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
156
157
158
159
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
160
161
162
163
164
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
165
166
167
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
168
169
        super(GPT2Config, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
170
171
172
173
174
175
176
177
178
179
180
181
182
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
183
184
185
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
186
187
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
188
189

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
190
191
192
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
193
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
194
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

201
202
203
204
    @property
    def max_position_embeddings(self):
        return self.n_positions

thomwolf's avatar
thomwolf committed
205
206
207
208
209
210
211
212
213
214
215
216
217
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer


thomwolf's avatar
thomwolf committed
218
219

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
220
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
221
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
222
223
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
231

thomwolf's avatar
thomwolf committed
232
233
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
234
235
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
236
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
237

238
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
239
240
        if len(heads) == 0:
            return
241
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
242
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
243
        for head in heads:
244
245
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
246
247
248
249
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
250

251
252
253
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
254

255
256
257
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
258
        self.pruned_heads = self.pruned_heads.union(heads)
259

260
    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
261
262
263
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
264
265
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
266
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
267

268
269
270
271
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

thomwolf's avatar
thomwolf committed
272
        w = nn.Softmax(dim=-1)(w)
273
        w = self.attn_dropout(w)
274
275
276
277
278

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
279
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
280
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
281
282
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
283
284
285
286
287
288
289
290
291
292

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
293
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
294
        else:
thomwolf's avatar
thomwolf committed
295
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
296

297
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
298
299
300
301
302
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
303
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
304
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
305
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
306
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
307
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
308

309
        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
310
        a = attn_outputs[0]
311

thomwolf's avatar
thomwolf committed
312
313
        a = self.merge_heads(a)
        a = self.c_proj(a)
314
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
315
316
317

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
318
319
320
321
322
323
324
325
326


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
327
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
328
329
330
331

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
332
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
333
334
335


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
336
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
337
338
339
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
340
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
341
342
343
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

344
345
346
347
348
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x),
                                layer_past=layer_past,
                                attention_mask=attention_mask,
                                head_mask=head_mask)
thomwolf's avatar
thomwolf committed
349
350
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
351
        x = x + a
thomwolf's avatar
thomwolf committed
352
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
353
        x = x + m
thomwolf's avatar
thomwolf committed
354
355
356

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
357
358


359
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
360
361
362
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
363
    config_class = GPT2Config
364
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
365
366
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
367

368
369
370
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

371
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
372
373
        """ Initialize the weights.
        """
374
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
375
376
377
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
378
379
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
380
381
382
383
384
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
401
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
402
403
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
404
405
"""

thomwolf's avatar
thomwolf committed
406
GPT2_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
407
408
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
409
410
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
thomwolf's avatar
thomwolf committed
411
412
413
414
415
416
417
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
418
419
420
421
422
423
424
425
426
427
428
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
429
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
430
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
431
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
432
433
434
435
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
436
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
437
class GPT2Model(GPT2PreTrainedModel):
438
    r"""
thomwolf's avatar
thomwolf committed
439
440
441
442
443
444
445
446
447
448
449
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
450
451
452
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
453
454
455

    Examples::

456
457
458
459
460
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
461
462

    """
thomwolf's avatar
thomwolf committed
463
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
464
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
465
466
467
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
468
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
469
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
470
        self.drop = nn.Dropout(config.embd_pdrop)
471
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
472
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
473

474
        self.init_weights()
thomwolf's avatar
thomwolf committed
475

thomwolf's avatar
thomwolf committed
476
477
    def _resize_token_embeddings(self, new_num_tokens):
        self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
thomwolf's avatar
thomwolf committed
478
        return self.wte
thomwolf's avatar
thomwolf committed
479

thomwolf's avatar
thomwolf committed
480
    def _prune_heads(self, heads_to_prune):
481
482
483
484
485
486
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

487
    def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
488
        if past is None:
thomwolf's avatar
thomwolf committed
489
            past_length = 0
thomwolf's avatar
thomwolf committed
490
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
491
        else:
thomwolf's avatar
thomwolf committed
492
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
493
494
495
496
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        # Attention mask.
        if attention_mask is not None:
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

514
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
515
        # 1.0 in head_mask indicate we keep the head
516
        # attention_probs has shape bsz x n_heads x N x N
517
        # head_mask has shape n_layer x batch x n_heads x N x N
518
519
        if head_mask is not None:
            if head_mask.dim() == 1:
520
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
521
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
522
            elif head_mask.dim() == 2:
523
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
524
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
525
526
        else:
            head_mask = [None] * self.config.n_layer
527

thomwolf's avatar
thomwolf committed
528
529
530
531
532
533
534
535
536
537
538
539
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
540
541
        hidden_states = self.drop(hidden_states)

542
543
        output_shape = input_shape + (hidden_states.size(-1),)

544
        presents = ()
thomwolf's avatar
thomwolf committed
545
        all_attentions = []
546
        all_hidden_states = ()
547
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
548
            if self.output_hidden_states:
549
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
550

551
552
553
554
555
            outputs = block(hidden_states,
                            past=layer_past,
                            attention_mask=attention_mask,
                            head_mask=head_mask[i])

thomwolf's avatar
thomwolf committed
556
            hidden_states, present = outputs[:2]
557
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
558
559
560
561

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
562
        hidden_states = self.ln_f(hidden_states)
563

thomwolf's avatar
thomwolf committed
564
565
566
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
567
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
568

569
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
570
        if self.output_hidden_states:
571
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
572
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
573
574
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
575
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
576
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
577
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
578
579


thomwolf's avatar
thomwolf committed
580
@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
581
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
582
class GPT2LMHeadModel(GPT2PreTrainedModel):
583
    r"""
thomwolf's avatar
thomwolf committed
584
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
585
586
587
588
589
590
591
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
592
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
593
594
595
596
597
598
599
600
601
602
603
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
604
605
606
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
607
608
609

    Examples::

thomwolf's avatar
thomwolf committed
610
611
612
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

613
614
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
615

616
617
618
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
thomwolf's avatar
thomwolf committed
619
620

    """
thomwolf's avatar
thomwolf committed
621
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
622
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
623
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
624
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
625

626
        self.init_weights()
thomwolf's avatar
thomwolf committed
627
        self.tie_weights()
628

thomwolf's avatar
thomwolf committed
629
630
631
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
thomwolf's avatar
thomwolf committed
632
        """
thomwolf's avatar
thomwolf committed
633
634
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
635

636
637
638
639
640
641
642
643
    def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               past=past,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
644
        hidden_states = transformer_outputs[0]
645

thomwolf's avatar
thomwolf committed
646
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
647

648
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
649
        if labels is not None:
650
            # Shift so that tokens < n predict n
651
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
652
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
653
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
654
            loss_fct = CrossEntropyLoss(ignore_index=-1)
655
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
656
                            shift_labels.view(-1))
657
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
658
659

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
660
661


thomwolf's avatar
thomwolf committed
662
663
664
@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
665
the classification head takes as input the input of a specified classification token index in the input sequence).
666
""", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
667
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
668
    r"""
thomwolf's avatar
thomwolf committed
669
670
671
672
673
674
675
676
677
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
678
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
679
680
681
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
thomwolf's avatar
thomwolf committed
682

thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
700
701
702
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
703
704
705

    Examples::

706
707
708
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
709
710
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
711
712
713
714
715
716
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
thomwolf's avatar
thomwolf committed
717
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
thomwolf's avatar
thomwolf committed
718
719
720
721
722
723
724
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
725
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
726
727

    """
thomwolf's avatar
thomwolf committed
728
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
729
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
730
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
731
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
732
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
733

734
        self.init_weights()
735
        self.tie_weights()
thomwolf's avatar
thomwolf committed
736

thomwolf's avatar
thomwolf committed
737
738
739
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
740
        """
thomwolf's avatar
thomwolf committed
741
742
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
743

744
745
746
747
748
749
750
751
752
    def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                mc_token_ids=None, lm_labels=None, mc_labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               past=past,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               head_mask=head_mask)

thomwolf's avatar
thomwolf committed
753
        hidden_states = transformer_outputs[0]
754

thomwolf's avatar
thomwolf committed
755
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
756
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
757

758
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
759
760
761
762
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
763
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
764
        if lm_labels is not None:
765
766
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
767
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
768
769
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
770
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
771
772

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)