modeling_gpt2.py 35.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
34
35
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary,
                             add_start_docstrings)
thomwolf's avatar
thomwolf committed
36
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37
38
39

logger = logging.getLogger(__name__)

40
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
41
42
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin"}
43
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
thomwolf's avatar
thomwolf committed
44
45
                                      "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json",
                                      "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-config.json"}
thomwolf's avatar
thomwolf committed
46

47
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
48
49
50
51
52
53
54
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
55
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
56
57
58
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
59
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
60
61
62
63
64
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
65
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
66
67
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
68
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
69
70

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
71
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
72
73
74
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
75
76
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
83
84
85
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
86
87
88
89
90
91
92
93
94
95
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
96
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
97
98
99
100
101
102
103
104
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


105
class GPT2Config(PretrainedConfig):
thomwolf's avatar
thomwolf committed
106
    """Configuration class to store the configuration of a `GPT2Model`.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
thomwolf's avatar
thomwolf committed
124
    """
125
    pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
126
127
128

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
129
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
130
131
132
133
134
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
135
136
137
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
138
139
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
140
141

        num_labels=1,
thomwolf's avatar
thomwolf committed
142
        summary_type='cls_index',
thomwolf's avatar
thomwolf committed
143
144
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
145
        summary_proj_to_labels=True,
146
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
147
        **kwargs
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
156
157
158
159
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
160
161
162
163
164
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
165
166
167
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
168
169
        super(GPT2Config, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
170
171
172
173
174
175
176
177
178
179
180
181
182
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
183
184
185
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
186
187
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
188
189

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
190
191
192
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
193
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
194
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

201
202
203
204
    @property
    def max_position_embeddings(self):
        return self.n_positions

thomwolf's avatar
thomwolf committed
205
206
207
208
209
210
211
212
213
214
215
216
217
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer


thomwolf's avatar
thomwolf committed
218
219

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
220
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
221
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
222
223
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
231

thomwolf's avatar
thomwolf committed
232
233
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
234
235
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
236

237
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
238
239
        if len(heads) == 0:
            return
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
254
255
256
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
257
258
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
259
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
260
261

        w = nn.Softmax(dim=-1)(w)
262
        w = self.attn_dropout(w)
263
264
265
266
267

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
268
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
269
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
270
271
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
272
273
274
275
276
277
278
279
280
281

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
282
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
283
        else:
thomwolf's avatar
thomwolf committed
284
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
285

286
    def forward(self, x, layer_past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
287
288
289
290
291
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
292
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
293
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
294
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
295
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
296
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
297

thomwolf's avatar
thomwolf committed
298
299
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
300

thomwolf's avatar
thomwolf committed
301
302
        a = self.merge_heads(a)
        a = self.c_proj(a)
303
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
304
305
306

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
307
308
309
310
311
312
313
314
315


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
316
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
317
318
319
320

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
321
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
322
323
324


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
325
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
326
327
328
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
329
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
330
331
332
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

333
334
    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
335
336
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
337
        x = x + a
thomwolf's avatar
thomwolf committed
338
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
339
        x = x + m
thomwolf's avatar
thomwolf committed
340
341
342

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
343
344


345
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
346
347
348
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
349
    config_class = GPT2Config
350
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
351
352
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
353

354
355
356
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
357
358
359
    def init_weights(self, module):
        """ Initialize the weights.
        """
360
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
361
362
363
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
364
365
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
366
367
368
369
370
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
387
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
388
389
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
390
391
"""

thomwolf's avatar
thomwolf committed
392
GPT2_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
393
394
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
395
396
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
thomwolf's avatar
thomwolf committed
397
398
399
400
401
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
402
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
403
404
405
406
407
408
409
410
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
411
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
412
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
413
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
414
415
416
417
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
418
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
419
class GPT2Model(GPT2PreTrainedModel):
420
    r"""
thomwolf's avatar
thomwolf committed
421
422
423
424
425
426
427
428
429
430
431
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
432
433
434
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
435
436
437

    Examples::

438
439
440
441
442
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
443
444

    """
thomwolf's avatar
thomwolf committed
445
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
446
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
447
448
449
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
450
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
451
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
452
        self.drop = nn.Dropout(config.embd_pdrop)
453
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
454
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
455
456
457

        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
458
459
    def _resize_token_embeddings(self, new_num_tokens):
        self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
thomwolf's avatar
thomwolf committed
460
        return self.wte
thomwolf's avatar
thomwolf committed
461

thomwolf's avatar
thomwolf committed
462
    def _prune_heads(self, heads_to_prune):
463
464
465
466
467
468
469
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
470
        if past is None:
thomwolf's avatar
thomwolf committed
471
            past_length = 0
thomwolf's avatar
thomwolf committed
472
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
473
        else:
thomwolf's avatar
thomwolf committed
474
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
475
476
477
478
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

479
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
480
        # 1.0 in head_mask indicate we keep the head
481
        # attention_probs has shape bsz x n_heads x N x N
482
        # head_mask has shape n_layer x batch x n_heads x N x N
483
484
        if head_mask is not None:
            if head_mask.dim() == 1:
485
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
486
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
487
            elif head_mask.dim() == 2:
488
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
489
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
490
491
        else:
            head_mask = [None] * self.config.n_layer
492

thomwolf's avatar
thomwolf committed
493
494
495
496
497
498
499
500
501
502
503
504
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
505
506
        hidden_states = self.drop(hidden_states)

507
508
        output_shape = input_shape + (hidden_states.size(-1),)

509
        presents = ()
thomwolf's avatar
thomwolf committed
510
        all_attentions = []
511
        all_hidden_states = ()
512
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
513
            if self.output_hidden_states:
514
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
515

516
            outputs = block(hidden_states, layer_past, head_mask[i])
thomwolf's avatar
thomwolf committed
517
            hidden_states, present = outputs[:2]
518
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
519
520
521
522

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
523
        hidden_states = self.ln_f(hidden_states)
524

thomwolf's avatar
thomwolf committed
525
526
527
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
528
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
529

530
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
531
        if self.output_hidden_states:
532
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
533
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
534
535
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
536
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
537
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
538
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
539
540


thomwolf's avatar
thomwolf committed
541
@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
542
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
543
class GPT2LMHeadModel(GPT2PreTrainedModel):
544
    r"""
thomwolf's avatar
thomwolf committed
545
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
546
547
548
549
550
551
552
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
553
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
554
555
556
557
558
559
560
561
562
563
564
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
565
566
567
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
568
569
570

    Examples::

571
572
573
574
575
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
thomwolf's avatar
thomwolf committed
576
577

    """
thomwolf's avatar
thomwolf committed
578
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
579
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
580
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
581
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
582

thomwolf's avatar
thomwolf committed
583
584
        self.apply(self.init_weights)
        self.tie_weights()
585

thomwolf's avatar
thomwolf committed
586
587
588
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
thomwolf's avatar
thomwolf committed
589
        """
thomwolf's avatar
thomwolf committed
590
591
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
592

thomwolf's avatar
thomwolf committed
593
    def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
594
595
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
596
        hidden_states = transformer_outputs[0]
597

thomwolf's avatar
thomwolf committed
598
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
599

600
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
601
        if labels is not None:
602
            # Shift so that tokens < n predict n
603
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
604
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
605
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
606
            loss_fct = CrossEntropyLoss(ignore_index=-1)
607
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
608
                            shift_labels.view(-1))
609
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
610
611

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
612
613


thomwolf's avatar
thomwolf committed
614
615
616
@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
617
the classification head takes as input the input of a specified classification token index in the input sequence).
thomwolf's avatar
thomwolf committed
618
""", GPT2_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
619
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
620
    r"""    Inputs:
thomwolf's avatar
thomwolf committed
621
622
623
624
625
626
627
628
629
630
631
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
632
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
633
634
635
636
637
638
639
640
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
641
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
642
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
643
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
644
645
646
647
648
649
650
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
651
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
652
653
654
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
thomwolf's avatar
thomwolf committed
655

thomwolf's avatar
thomwolf committed
656
657
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
thomwolf's avatar
thomwolf committed
658

thomwolf's avatar
thomwolf committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
676
677
678
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
679
680
681

    Examples::

682
683
684
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
685
686
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
687
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})  # Add a [CLS] to the vocabulary (we should train it also!)
688
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings to the new vocabulary size (add a vector at the end)
thomwolf's avatar
thomwolf committed
689
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
690
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
691
        mc_token_ids = torch.tensor([input_ids.size(-1)])  # Batch size 1
692
693
        outputs = model(input_ids, mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
694
695

    """
thomwolf's avatar
thomwolf committed
696
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
697
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
698
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
699
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
700
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
701

thomwolf's avatar
thomwolf committed
702
        self.apply(self.init_weights)
703
        self.tie_weights()
thomwolf's avatar
thomwolf committed
704

thomwolf's avatar
thomwolf committed
705
706
707
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
708
        """
thomwolf's avatar
thomwolf committed
709
710
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
711

thomwolf's avatar
thomwolf committed
712
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
713
                position_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
714
715
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
716
        hidden_states = transformer_outputs[0]
717

thomwolf's avatar
thomwolf committed
718
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
719
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
720

721
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
722
723
724
725
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
726
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
727
        if lm_labels is not None:
728
729
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
730
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
731
732
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
733
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
734
735

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)