modeling_gpt2.py 33.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
thomwolf's avatar
thomwolf committed
34
                          PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
40
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
41
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
42
                                      "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
thomwolf's avatar
thomwolf committed
43

44
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
51
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
52
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
53
54
55
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
56
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
57
58
59
60
61
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
62
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
63
64
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
65
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
66
67

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
68
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
69
70
71
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
72
73
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
80
81
82
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
91
92
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
93
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
101
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


102
class GPT2Config(PretrainedConfig):
thomwolf's avatar
thomwolf committed
103
    """Configuration class to store the configuration of a `GPT2Model`.
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
thomwolf's avatar
thomwolf committed
121
    """
122
    pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
123
124
125

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
126
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
127
128
129
130
131
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
132
133
134
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
135
136
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
137
138

        num_labels=1,
thomwolf's avatar
thomwolf committed
139
140
141
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
142
        summary_proj_to_labels=True,
143
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
144
        **kwargs
thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
151
152
153
154
155
156
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
157
158
159
160
161
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
162
163
164
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
165
166
        super(GPT2Config, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
167
168
169
170
171
172
173
174
175
176
177
178
179
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
180
181
182
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
183
184
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
185
186

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
187
188
189
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
190
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
191
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

198
199
200
201
    @property
    def max_position_embeddings(self):
        return self.n_positions

thomwolf's avatar
thomwolf committed
202
203
204
205
206
207
208
209
210
211
212
213
214
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer


thomwolf's avatar
thomwolf committed
215
216

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
217
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
218
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
219
220
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
221
222
223
224
225
226
227
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
228

thomwolf's avatar
thomwolf committed
229
230
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
231
232
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
233

234
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
235
236
        if len(heads) == 0:
            return
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
251
252
253
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
254
255
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
256
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
257
258

        w = nn.Softmax(dim=-1)(w)
259
        w = self.attn_dropout(w)
260
261
262
263
264

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
265
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
266
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
267
268
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
269
270
271
272
273
274
275
276
277
278

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
279
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
280
        else:
thomwolf's avatar
thomwolf committed
281
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
282

283
    def forward(self, x, layer_past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
284
285
286
287
288
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
289
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
290
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
291
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
292
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
293
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
294

thomwolf's avatar
thomwolf committed
295
296
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
297

thomwolf's avatar
thomwolf committed
298
299
        a = self.merge_heads(a)
        a = self.c_proj(a)
300
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
301
302
303

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
304
305
306
307
308
309
310
311
312


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
313
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
314
315
316
317

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
318
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
319
320
321


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
322
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
323
324
325
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
326
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
327
328
329
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

330
331
    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
332
333
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
334
        x = x + a
thomwolf's avatar
thomwolf committed
335
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
336
        x = x + m
thomwolf's avatar
thomwolf committed
337
338
339

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
340
341


342
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
343
344
345
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
346
    config_class = GPT2Config
347
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
348
349
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
350

351
352
353
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
354
355
356
    def init_weights(self, module):
        """ Initialize the weights.
        """
357
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
358
359
360
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
361
362
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
370
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class GPT2Model(GPT2PreTrainedModel):
    """OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").

thomwolf's avatar
thomwolf committed
371
372
373
    GPT-2 use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
374
375
376
377
    The number of special embeddings can be controlled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrix:
    ::
thomwolf's avatar
thomwolf committed
378
379
380
381
382
383

        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
thomwolf's avatar
thomwolf committed
384
         config.vocab_size + n_special - 1]                  ______________________
thomwolf's avatar
thomwolf committed
385

thomwolf's avatar
thomwolf committed
386
    where total_tokens_embeddings is equal to
387
388
389

    ::

thomwolf's avatar
thomwolf committed
390
        total_tokens_embeddings = vocab_size + n_special
thomwolf's avatar
thomwolf committed
391

392
393
394
    You should use the associated indices to index the embeddings.

    Args:
395
396
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
397

398
399
400
401
402
403


    Example::

        config = modeling_gpt2.GPT2Config()
        model = modeling_gpt2.GPT2Model(config)
thomwolf's avatar
thomwolf committed
404
405
    """

thomwolf's avatar
thomwolf committed
406
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
407
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
408
409
410
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
411
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
412
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
413
        self.drop = nn.Dropout(config.embd_pdrop)
414
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
415
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
416
417
418

        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
419
420
    def _resize_token_embeddings(self, new_num_tokens):
        self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
thomwolf's avatar
thomwolf committed
421
        return self.wte
thomwolf's avatar
thomwolf committed
422

thomwolf's avatar
thomwolf committed
423
    def _prune_heads(self, heads_to_prune):
424
425
426
427
428
429
430
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `past`: an optional list of ``torch.LongTensor`` that contains pre-computed hidden-states
                (key and values in the attention blocks) to speed up sequential decoding
                (this is the presents output of the model, cf. below).
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
             A tuple consisting of ``hidden_states`` and ``presents``.

                 ``hidden_states`` are a list of all the encoded-hidden-states in the model (length of the list: number of
                 layers + 1 for the output of the embeddings) as ``torch.FloatTensor`` of size [batch_size, sequence_length,
                 hidden_size] (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of
                 input_ids).

                 ``presents`` are a list of pre-computed hidden-states (key and values in each attention blocks) as
                 torch.FloatTensors. They can be reused to speed up sequential decoding.


        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            hidden_states, presents = model(input_ids)
            # or
            hidden_states, presents = model.forward(input_ids)

        """
thomwolf's avatar
thomwolf committed
472
        if past is None:
thomwolf's avatar
thomwolf committed
473
            past_length = 0
thomwolf's avatar
thomwolf committed
474
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
475
        else:
thomwolf's avatar
thomwolf committed
476
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
477
478
479
480
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

481
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
482
        # 1.0 in head_mask indicate we keep the head
483
        # attention_probs has shape bsz x n_heads x N x N
484
        # head_mask has shape n_layer x batch x n_heads x N x N
485
486
        if head_mask is not None:
            if head_mask.dim() == 1:
487
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
488
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
489
            elif head_mask.dim() == 2:
490
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
491
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
492
493
        else:
            head_mask = [None] * self.config.n_layer
494

thomwolf's avatar
thomwolf committed
495
496
497
498
499
500
501
502
503
504
505
506
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
507
508
        hidden_states = self.drop(hidden_states)

509
510
        output_shape = input_shape + (hidden_states.size(-1),)

511
        presents = ()
thomwolf's avatar
thomwolf committed
512
        all_attentions = []
513
        all_hidden_states = ()
514
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
515
            if self.output_hidden_states:
516
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
517

518
            outputs = block(hidden_states, layer_past, head_mask[i])
thomwolf's avatar
thomwolf committed
519
            hidden_states, present = outputs[:2]
520
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
521
522
523
524

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
525
        hidden_states = self.ln_f(hidden_states)
526

thomwolf's avatar
thomwolf committed
527
528
529
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
530
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
531

532
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
533
        if self.output_hidden_states:
534
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
535
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
536
537
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
538
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
539
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
540
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
541
542
543
544
545


class GPT2LMHeadModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").

546
    Args:
547
548
549
550
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
551

552
    Example::
thomwolf's avatar
thomwolf committed
553

554
555
        config = modeling_gpt2.GPT2Config()
        model = modeling_gpt2.GPT2LMHeadModel(config)
thomwolf's avatar
thomwolf committed
556
557
    """

thomwolf's avatar
thomwolf committed
558
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
559
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
560
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
561
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
562

thomwolf's avatar
thomwolf committed
563
564
        self.apply(self.init_weights)
        self.tie_weights()
565

thomwolf's avatar
thomwolf committed
566
567
568
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
thomwolf's avatar
thomwolf committed
569
        """
thomwolf's avatar
thomwolf committed
570
571
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
572

573
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None, head_mask=None):
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `past`: an optional list of ``torch.LongTensor`` that contains pre-computed hidden-states
                (key and values in the attention blocks) to speed up sequential decoding
                (this is the presents output of the model, cf. below).
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            If ``lm_labels`` is not ``None``, returns the language modeling loss. It ``lm_labels`` is ``None``, returns
            a tuple of (``lm_logits``, ``presents``).

                ``lm_logits`` is the language modeling logits as a ``torch.FloatTensor`` of size [batch_size,
                sequence_length, config.vocab_size] (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ...
                d_n are the dimension of input_ids).

                ``presents`` is a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            lm_logits, presents = model(input_ids)
            # or
            lm_logits, presents = model.forward(input_ids)

        """
thomwolf's avatar
thomwolf committed
617
618
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
619

thomwolf's avatar
thomwolf committed
620
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
621

622
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
623
        if lm_labels is not None:
624
            # Shift so that tokens < n predict n
625
626
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
627
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
628
            loss_fct = CrossEntropyLoss(ignore_index=-1)
629
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
630
                            shift_labels.view(-1))
631
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
632
633

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
634
635
636
637
638


class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").

639
    Args:
640
641
642
643
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
644

645
    Example::
thomwolf's avatar
thomwolf committed
646

647
648
        config = modeling_gpt2.GPT2Config()
        model = modeling_gpt2.GPT2DoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
649
650
    """

thomwolf's avatar
thomwolf committed
651
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
652
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
653
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
654
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
655
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
656

thomwolf's avatar
thomwolf committed
657
658
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
659
660
661
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
662
        """
thomwolf's avatar
thomwolf committed
663
664
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
665

thomwolf's avatar
thomwolf committed
666
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
667
                position_ids=None, past=None, head_mask=None):
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with the BPE token
                indices selected in the range [0, config.vocab_size[
            `mc_token_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices] with the index of the token from
                which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
                with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., config.vocab_size]
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
            `past`: an optional list of ``torch.LongTensor`` that contains pre-computed hidden-states
                (key and values in the attention blocks) to speed up sequential decoding
                (this is the presents output of the model, cf. below).
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            If ``lm_labels`` and ``multiple_choice_labels`` are not ``None``, outputs a
            ``tuple(language_modeling_loss, multiple_choice_loss)``. If they are not ``None``, outputs a
            ``tuple(lm_logits, multiple_choice_logits, presents)``.

                ``lm_logits``: the language modeling logits as a ``torch.FloatTensor`` of size [batch_size, num_choices, sequence_length, config.vocab_size]

                ``multiple_choice_logits``: the multiple choice logits as a ``torch.FloatTensor`` of size [batch_size, num_choices]

                ``presents``: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
            mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

            lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
            # or
            lm_logits, multiple_choice_logits, presents = model.forward(input_ids, mc_token_ids)

        """
thomwolf's avatar
thomwolf committed
717
718
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
719

thomwolf's avatar
thomwolf committed
720
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
721
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
722

723
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
724
725
726
727
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
728
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
729
        if lm_labels is not None:
730
731
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
732
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
733
734
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
735
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
736
737

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)