Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
7fba47b7
Commit
7fba47b7
authored
Sep 04, 2019
by
thomwolf
Browse files
WIP reordering
parent
e25cba78
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
8 additions
and
8 deletions
+8
-8
pytorch_transformers/modeling_gpt2.py
pytorch_transformers/modeling_gpt2.py
+2
-2
pytorch_transformers/modeling_openai.py
pytorch_transformers/modeling_openai.py
+3
-3
pytorch_transformers/tests/modeling_roberta_test.py
pytorch_transformers/tests/modeling_roberta_test.py
+3
-3
No files found.
pytorch_transformers/modeling_gpt2.py
View file @
7fba47b7
...
...
@@ -549,7 +549,7 @@ class GPT2Model(GPT2PreTrainedModel):
all_hidden_states
=
all_hidden_states
+
(
hidden_states
.
view
(
*
output_shape
),)
outputs
=
block
(
hidden_states
,
past
=
layer_past
,
layer_
past
=
layer_past
,
attention_mask
=
attention_mask
,
head_mask
=
head_mask
[
i
])
...
...
@@ -666,7 +666,7 @@ the classification head takes as input the input of a specified classification t
"""
,
GPT2_START_DOCSTRING
,
GPT2_INPUTS_DOCSTRING
)
class
GPT2DoubleHeadsModel
(
GPT2PreTrainedModel
):
r
"""
**mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
**mc_token_ids**:
(`optional`, default to index of the last token of the input)
``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
Index of the classification token in each input sequence.
Selected in the range ``[0, input_ids.size(-1) - 1[``.
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
...
...
pytorch_transformers/modeling_openai.py
View file @
7fba47b7
...
...
@@ -636,7 +636,7 @@ the classification head takes as input the input of a specified classification t
"""
,
OPENAI_GPT_START_DOCSTRING
,
OPENAI_GPT_INPUTS_DOCSTRING
)
class
OpenAIGPTDoubleHeadsModel
(
OpenAIGPTPreTrainedModel
):
r
"""
**mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
**mc_token_ids**:
(`optional`, default to index of the last token of the input)
``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
Index of the classification token in each input sequence.
Selected in the range ``[0, input_ids.size(-1) - 1[``.
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
...
...
@@ -678,7 +678,7 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids)
outputs = model(input_ids,
mc_token_ids=
mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
...
...
@@ -700,7 +700,7 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
self
.
transformer
.
tokens_embed
)
def
forward
(
self
,
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
lm_labels
=
None
,
mc_labels
=
None
):
mc_token_ids
=
None
,
lm_labels
=
None
,
mc_labels
=
None
):
transformer_outputs
=
self
.
transformer
(
input_ids
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
...
...
pytorch_transformers/tests/modeling_roberta_test.py
View file @
7fba47b7
...
...
@@ -123,8 +123,8 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
token_labels
,
choice_labels
):
model
=
RobertaModel
(
config
=
config
)
model
.
eval
()
sequence_output
,
pooled_output
=
model
(
input_ids
,
token_type_ids
,
input_mask
)
sequence_output
,
pooled_output
=
model
(
input_ids
,
token_type_ids
)
sequence_output
,
pooled_output
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
sequence_output
,
pooled_output
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
sequence_output
,
pooled_output
=
model
(
input_ids
)
result
=
{
...
...
@@ -140,7 +140,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
token_labels
,
choice_labels
):
model
=
RobertaForMaskedLM
(
config
=
config
)
model
.
eval
()
loss
,
prediction_scores
=
model
(
input_ids
,
token_type_ids
,
input_mask
,
token_labels
)
loss
,
prediction_scores
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
masked_lm_labels
=
token_labels
)
result
=
{
"loss"
:
loss
,
"prediction_scores"
:
prediction_scores
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment