test_modeling_tf_common.py 68.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
from importlib import import_module
25
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
26

Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
29
from transformers import is_tf_available
30
from transformers.models.auto import get_values
Lysandre Debut's avatar
Lysandre Debut committed
31
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
    ENDPOINT_STAGING,
    PASS,
    USER,
35
    CaptureLogger,
Lysandre Debut's avatar
Lysandre Debut committed
36
37
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    is_staging_test,
39
    require_keras2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
40
41
42
43
    require_tf,
    slow,
    tooslow,
)
44
from transformers.utils import logging
45

Aymeric Augustin's avatar
Aymeric Augustin committed
46

47
if is_tf_available():
thomwolf's avatar
thomwolf committed
48
    import numpy as np
49
    import tensorflow as tf
50

51
    from transformers import (
52
53
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
54
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
55
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
56
        TF_MODEL_FOR_PRETRAINING_MAPPING,
57
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
58
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
59
60
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
61
        BertConfig,
62
        TFAutoModel,
63
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
64
        TFBertModel,
65
66
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
67
    )
68
69
70
71
72
73
74
75
76
77
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
78

Julien Chaumond's avatar
Julien Chaumond committed
79
80
81
82
83
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
84
85
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
86
                )
Julien Plu's avatar
Julien Plu committed
87
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
88
89
90
91
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
92

93

thomwolf's avatar
thomwolf committed
94
95
96
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
97
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
98
99
100
101
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


102
103
@require_tf
class TFModelTesterMixin:
104

105
106
    model_tester = None
    all_model_classes = ()
107
    all_generative_model_classes = ()
108
    test_mismatched_shapes = True
109
    test_resize_embeddings = True
110
    test_head_masking = True
111
    is_encoder_decoder = False
112

Lysandre Debut's avatar
Lysandre Debut committed
113
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
114
115
        inputs_dict = copy.deepcopy(inputs_dict)

116
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
117
            inputs_dict = {
118
119
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
120
121
122
                else v
                for k, v in inputs_dict.items()
            }
123
124

        if return_labels:
125
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
126
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
127
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
128
129
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
130
            elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
131
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
132
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
133
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
134
            elif model_class in [
135
136
137
138
139
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
140
141
142
143
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
144
145
        return inputs_dict

146
147
    def test_initialization(self):
        pass
148

149
150
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
151

152
153
        for model_class in self.all_model_classes:
            model = model_class(config)
154
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
155

156
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
157
                model.save_pretrained(tmpdirname, saved_model=False)
158
                model = model_class.from_pretrained(tmpdirname)
159
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
160

161
                self.assert_outputs_same(after_outputs, outputs)
162

Lysandre Debut's avatar
Lysandre Debut committed
163
    @tooslow
164
165
166
167
168
169
170
171
172
173
174
175
176
    def test_graph_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

Lysandre Debut's avatar
Lysandre Debut committed
177
    @tooslow
Julien Plu's avatar
Julien Plu committed
178
179
180
181
182
183
184
185
186
187
188
189
190
    def test_xla_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function(experimental_compile=True)
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

191
192
193
194
195
196
197
198
199
200
201
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
202
                    "input_ids",
203
204
205
206
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
207
                expected_arg_names.extend(
208
209
210
211
212
213
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                # Necessary to handle BART with newly added cross_attn_head_mask
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
214
215
216
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
217
218

            else:
Julien Plu's avatar
Julien Plu committed
219
                expected_arg_names = ["input_ids"]
220
221
                self.assertListEqual(arg_names[:1], expected_arg_names)

Lysandre Debut's avatar
Lysandre Debut committed
222
    @tooslow
Julien Plu's avatar
Julien Plu committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
Julien Plu's avatar
Julien Plu committed
240
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
Julien Plu's avatar
Julien Plu committed
241
242
            self.assertTrue(os.path.exists(saved_model_dir))

Lysandre Debut's avatar
Lysandre Debut committed
243
    @tooslow
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(class_inputs_dict))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
                outputs = model(class_inputs_dict)

                if self.is_encoder_decoder:
                    output_hidden_states = outputs["encoder_hidden_states"]
                    output_attentions = outputs["encoder_attentions"]
                else:
                    output_hidden_states = outputs["hidden_states"]
                    output_attentions = outputs["attentions"]

                self.assertEqual(len(outputs), num_out)

                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )

                self.assertEqual(len(output_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(output_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )

                self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(output_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

333
    @require_keras2onnx
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import keras2onnx
        import onnxruntime

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

            onnx_model = keras2onnx.convert_keras(model, model.name, target_opset=self.onnx_min_opset)

            onnxruntime.InferenceSession(onnx_model.SerializeToString())

Lysandre Debut's avatar
Lysandre Debut committed
352
    @tooslow
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def test_mixed_precision(self):
        tf.keras.mixed_precision.experimental.set_policy("mixed_float16")

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            outputs = model(class_inputs_dict)

            self.assertIsNotNone(outputs)

        tf.keras.mixed_precision.experimental.set_policy("float32")

367
368
369
370
371
372
373
374
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
375
            if module_member_name.endswith("MainLayer")
376
            for module_member in (getattr(module, module_member_name),)
377
378
379
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
380
381
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
382
383
384
385
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
386
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
387
388
389
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
390

391
392
393
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
394

395
396
397
398
399
400
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
401
402
403
404
405
406
407
408
409
410
411
412
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
413
414
415
416
417
418
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
419
420
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
421
        elif isinstance(after_outputs, dict):
422
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
423
424
        else:
            out_1 = after_outputs[0].numpy()
425
        out_2 = outputs[0].numpy()
426
        self.assertEqual(out_1.shape, out_2.shape)
427
428
429
430
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
431

432
    @is_pt_tf_cross_test
433
434
    def test_pt_tf_model_equivalence(self):
        import torch
435

436
        import transformers
thomwolf's avatar
thomwolf committed
437

438
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
439

440
        for model_class in self.all_model_classes:
441
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
442
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
443

444
            config.output_hidden_states = True
445

446
447
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
448

449
            # Check we can load pt model in tf and vice-versa with model => model functions
450

451
452
453
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
454
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
455

456
457
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
458
459
460
461
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
Will Rice's avatar
Will Rice committed
462
463
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Julien Plu's avatar
Julien Plu committed
464
465
466
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

467
468
469
470
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

471
472
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
473
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
Will Rice's avatar
Will Rice committed
474

475
476
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
477

478
479
480
481
482
483
484
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
485

486
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
487
            self.assertLessEqual(max_diff, 4e-2)
488
489

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
490
            with tempfile.TemporaryDirectory() as tmpdirname:
491
492
493
494
495
496
497
498
499
500
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
Julien Plu's avatar
Julien Plu committed
501
502
503
504
505
            pt_inputs_dict = {}
            for name, key in self._prepare_for_class(inputs_dict, model_class).items():
                if type(key) == bool:
                    key = np.array(key, dtype=bool)
                    pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long)
Will Rice's avatar
Will Rice committed
506
507
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Julien Plu's avatar
Julien Plu committed
508
509
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
510
511
512
513
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

514
515
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
516
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
517
518
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
519
520
521
522
523
524
525
526
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

527
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
528
            self.assertLessEqual(max_diff, 4e-2)
529

Lysandre Debut's avatar
Lysandre Debut committed
530
    @tooslow
531
532
    def test_train_pipeline_custom_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
533
534
535
536
537
        # head_mask and decoder_head_mask has different shapes than other input args
        if "head_mask" in inputs_dict:
            del inputs_dict["head_mask"]
        if "decoder_head_mask" in inputs_dict:
            del inputs_dict["decoder_head_mask"]
538
539
        if "cross_attn_head_mask" in inputs_dict:
            del inputs_dict["cross_attn_head_mask"]
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        )

        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
                config.use_cache = False
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            if hasattr(self.model_tester, "num_labels"):
                num_labels = self.model_tester.num_labels
            else:
                num_labels = 2

            X = tf.data.Dataset.from_tensor_slices(
Julien Plu's avatar
Julien Plu committed
572
                (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1)))
573
574
575
576
577
578
            ).batch(1)

            hidden_states = main_layer(symbolic_inputs)[0]
            outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
            model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])

Julien Plu's avatar
Julien Plu committed
579
            model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"])
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
            model.fit(X, epochs=1)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                model(inputs_dict)

600
601
    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
602
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
603
604
605
606
607
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
608
609
610
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
611
612
613
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
614
                    ),
Julien Plu's avatar
Julien Plu committed
615
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
616
                }
617
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Julien Plu's avatar
Julien Plu committed
618
                input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
619
            else:
Julien Plu's avatar
Julien Plu committed
620
                input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
621

622
623
            # Prepare our model
            model = model_class(config)
624
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
625
            # Let's load it from the disk to be sure we can use pretrained weights
626
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
627
                model.save_pretrained(tmpdirname, saved_model=False)
628
629
630
631
632
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

633
            # Add a dense layer on top to test integration with other keras modules
634
635
636
637
638
639
640
641
642
643
644
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
645
646
647
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
648

649
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
650
            input_ids = inputs_keywords.pop("input_ids", None)
651
652
653
654
655
656
657
658
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
659
        config.return_dict = True
660
661
662
663
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
664

Julien Plu's avatar
Julien Plu committed
665
666
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
667
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
668
669
670
671
672
673
674
675
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
676
677
678
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
679
680
681
682
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
683
            )
Julien Plu's avatar
Julien Plu committed
684
685
686
687
688
689
690

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
691
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
692
693
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
694

695
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
696
697
698
699
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
700

701
702
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
703
            config.output_attentions = True
704
            model = model_class(config)
705
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
706
707
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
708
709
710

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
711
712
            config.output_hidden_states = True
            model = model_class(config)
713
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
714

715
716
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
717
            check_encoder_attentions_output(outputs)
718

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
761
762
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
787
788
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
789
790
791
            else:
                check_attentions_validity(outputs.attentions)

792
793
794
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
795
        def check_hidden_states_output(config, inputs_dict, model_class):
796
            model = model_class(config)
797
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
798
799
800
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
801

Julien Plu's avatar
Julien Plu committed
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
825

Joseph Liu's avatar
Joseph Liu committed
826
827
828
829
830
831
832
833
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

834
835
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
836
        list_lm_models = (
837
838
839
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
840
        )
841
842
843

        for model_class in self.all_model_classes:
            model = model_class(config)
844
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
845
846

            if model_class in list_lm_models:
847
                x = model.get_output_embeddings()
848
                assert isinstance(x, tf.keras.layers.Layer)
849
850
851
852
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
853
            else:
854
                x = model.get_output_embeddings()
855
                assert x is None
856
857
                name = model.get_bias()
                assert name is None
858
859
860
861
862
863

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
864
            first, second = (
865
866
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
867
            )
868
869
870
871
872
873
874
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

930
931
932
933
934
935
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

936
937
            inputs = copy.deepcopy(inputs_dict)

938
939
940
941
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
942
                encoder_input_ids = inputs["input_ids"]
943
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
944
                del inputs["input_ids"]
945
946
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
947
            if not self.is_encoder_decoder:
948
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
949
            else:
950
951
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
952

953
954
            inputs = self._prepare_for_class(inputs, model_class)

955
            model(inputs)
956

Lysandre Debut's avatar
Lysandre Debut committed
957
    @tooslow
Julien Plu's avatar
Julien Plu committed
958
959
960
961
962
963
    def test_graph_mode_with_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

964
965
            inputs = copy.deepcopy(inputs_dict)

Julien Plu's avatar
Julien Plu committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
            else:
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)

981
982
            inputs = self._prepare_for_class(inputs, model_class)

Julien Plu's avatar
Julien Plu committed
983
984
985
986
987
988
989
            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            model(inputs_np)

1011
1012
1013
1014
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1015
1016

        def _get_word_embedding_weight(model, embedding_layer):
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
1036

1037
1038
1039
1040
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
1041
1042
1043
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1044
                # reshape the embeddings
1045
1046
1047
1048
1049
1050
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1051
                assert_size = size if size is not None else config.vocab_size
1052
1053
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1054
1055
                # check that weights remain the same after resizing
                models_equal = True
1056
1057
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1058
1059
1060
                        models_equal = False
                self.assertTrue(models_equal)

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1081
    def test_lm_head_model_random_no_beam_search_generate(self):
1082
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1083
        input_ids = inputs_dict.get("input_ids", None)
1084

1085
        # iterate over all generative models
1086
1087
1088
1089
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
1090
                # if bos token id is not defined mobel needs input_ids
1091
                with self.assertRaises(AssertionError):
1092
                    model.generate(do_sample=True, max_length=5)
1093
                # num_return_sequences = 1
1094
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
1095
            else:
1096
                # num_return_sequences = 1
1097
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1098
1099

            with self.assertRaises(AssertionError):
1100
                # generating multiple sequences when no beam search generation
1101
1102
1103
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1104
1105
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1106
1107

            # check bad words tokens language generation
1108
1109
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1110
            output_tokens = model.generate(
1111
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1112
            )
1113
            # only count generated tokens
1114
1115
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1148
1149
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1150
        input_ids = inputs_dict.get("input_ids", None)
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1167
1168
1169
1170
1171
1172
1173
1174
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1175
1176
1177
1178
1179
1180
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1181
            output_tokens = model.generate(
1182
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1183
            )
1184
            # only count generated tokens
1185
1186
1187
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1221
1222
1223
1224
1225
1226
1227
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1228
1229
1230
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1231
1232
                loss_size = tf.size(added_label)

1233
                if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
1234
1235
1236
1237
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1238
1239
1240
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1255
1256
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1257
1258

                # Create a dictionary holding the location of the tensors in the tuple
1259
                tuple_index_mapping = {0: "input_ids"}
1260
                for label_key in label_keys:
1261
                    label_key_index = signature_names.index(label_key)
1262
1263
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1264
1265
1266
1267
1268
1269
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1270
1271

                for index, value in sorted_tuple_index_mapping:
1272
1273
                    list_input[index] = prepared_for_class[value]

1274
1275
1276
                tuple_input = tuple(list_input)

                # Send to model
1277
1278
                loss = model(tuple_input[:-1])[0]

1279
1280
                self.assertEqual(loss.shape, [loss_size])

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1315
    def test_load_with_mismatched_shapes(self):
1316
1317
        if not self.test_mismatched_shapes:
            return
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1334
1335
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1379
    def _check_generated_ids(self, output_ids):
1380
1381
1382
1383
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1396

thomwolf's avatar
thomwolf committed
1397
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1410
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1411
1412

    return output
1413
1414


1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1507
1508
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1520
1521
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1522
1523
1524
1525
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
Sylvain Gugger's avatar
Sylvain Gugger committed
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538


@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
1539
            cls._api.delete_repo(token=cls._token, name="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1540
1541
1542
1543
        except HTTPError:
            pass

        try:
1544
            cls._api.delete_repo(token=cls._token, name="test-model-tf-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)
        with tempfile.TemporaryDirectory() as tmp_dir:
1556
            model.save_pretrained(os.path.join(tmp_dir, "test-model-tf"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1557

1558
            new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
1572
                os.path.join(tmp_dir, "test-model-tf-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
1573
1574
1575
1576
1577
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

1578
            new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1579
1580
1581
1582
1583
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)