modeling_bert.py 65 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

thomwolf's avatar
thomwolf committed
31
32
from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel,
                             prune_linear_layer, add_start_docstrings)
thomwolf's avatar
thomwolf committed
33
34
35

logger = logging.getLogger(__name__)

36
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
37
38
39
40
41
42
43
44
45
46
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
47
48
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
49
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
50
}
51

52
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
53
54
55
56
57
58
59
60
61
62
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
63
64
65
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
66
67
}

thomwolf's avatar
thomwolf committed
68

69
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
70
    """ Load tf checkpoints in a pytorch model.
71
    """
72
73
74
75
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
76
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
77
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
78
79
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
80
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
81
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
82
83
84
85
86
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
87
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
88
89
90
91
92
93
94
95
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
96
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
97
            logger.info("Skipping {}".format("/".join(name)))
98
99
100
101
102
103
104
105
106
107
108
109
110
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
111
112
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
113
            else:
114
115
116
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
117
                    logger.info("Skipping {}".format("/".join(name)))
118
                    continue
119
120
121
122
123
124
125
126
127
128
129
130
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
131
        logger.info("Initialize PyTorch weight {}".format(name))
132
133
134
135
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
136
137
138
139
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
140
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147
148
149
150
151
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


152
class BertConfig(PretrainedConfig):
153
    r"""
154
        :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
155
        `BertModel`.
156

thomwolf's avatar
thomwolf committed
157

158
        Arguments:
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
179
            layer_norm_eps: The epsilon used by LayerNorm.
180
    """
thomwolf's avatar
thomwolf committed
181
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
thomwolf's avatar
thomwolf committed
197
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
198
199
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
200
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
216
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
217
218
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
VictorSanh's avatar
VictorSanh committed
219
                             " or the path to a pretrained model config file (str)")
thomwolf's avatar
thomwolf committed
220

221

222

223
224
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
雷打不动!'s avatar
雷打不动! committed
225
except (ImportError, AttributeError) as e:
226
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
227
    BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
228
229
230
231
232
233

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
234
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
235
236
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
237
238
239

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
240
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
241
242
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

thomwolf's avatar
thomwolf committed
243
    def forward(self, input_ids, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
244
        seq_length = input_ids.size(1)
thomwolf's avatar
thomwolf committed
245
246
247
        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
262
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
263
264
265
266
267
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
268
        self.output_attentions = config.output_attentions
269

thomwolf's avatar
thomwolf committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

285
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

307
308
309
310
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
311
        context_layer = torch.matmul(attention_probs, value_layer)
312

thomwolf's avatar
thomwolf committed
313
314
315
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
316

317
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
318
        return outputs
thomwolf's avatar
thomwolf committed
319
320
321
322
323
324


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
325
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
332
333
334
335
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
336
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
337
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
338
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
339
        self.output = BertSelfOutput(config)
340
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
341

thomwolf's avatar
thomwolf committed
342
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
343
344
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
345
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
346
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
thomwolf's avatar
thomwolf committed
347
        for head in heads:
348
349
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
350
351
352
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
353

thomwolf's avatar
thomwolf committed
354
355
356
357
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
358
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
359
360

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
361
362
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
363
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
364

365
    def forward(self, input_tensor, attention_mask, head_mask=None):
366
367
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
368
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
369
        return outputs
thomwolf's avatar
thomwolf committed
370
371
372
373
374
375


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
376
377
378
379
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
388
389
390

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
391
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
399
400
401
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
402
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
403
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
404
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
405
406
407
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

408
    def forward(self, hidden_states, attention_mask, head_mask=None):
409
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
410
411
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
412
        layer_output = self.output(intermediate_output, attention_output)
413
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
414
        return outputs
thomwolf's avatar
thomwolf committed
415
416
417


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
418
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
419
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
420
421
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
422
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
423

424
    def forward(self, hidden_states, attention_mask, head_mask=None):
425
426
        all_hidden_states = ()
        all_attentions = ()
427
        for i, layer_module in enumerate(self.layer):
428
            if self.output_hidden_states:
429
                all_hidden_states = all_hidden_states + (hidden_states,)
430
431
432
433

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
434
            if self.output_attentions:
435
                all_attentions = all_attentions + (layer_outputs[1],)
436
437
438

        # Add last layer
        if self.output_hidden_states:
439
            all_hidden_states = all_hidden_states + (hidden_states,)
440

441
        outputs = (hidden_states,)
442
        if self.output_hidden_states:
443
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
444
        if self.output_attentions:
445
            outputs = outputs + (all_attentions,)
446
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
468
469
470
471
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
472
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
473
474
475
476
477
478
479
480
481

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
482
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
483
484
485
486
487
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
488
489
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
490
                                 bias=False)
491

thomwolf's avatar
thomwolf committed
492
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
493
494
495
496
497
498
499
500

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
501
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
502
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
503
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
521
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
522
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
523
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
524
525
526
527
528
529
530
531
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


532
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
533
534
535
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
536
    config_class = BertConfig
537
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
538
539
540
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

541
542
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
543
544
545
546
547
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
548
549
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
550
551
552
553
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
554
555
556
557
558
BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.
559

thomwolf's avatar
thomwolf committed
560
561
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
562

thomwolf's avatar
thomwolf committed
563
564
    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805
thomwolf's avatar
thomwolf committed
565

thomwolf's avatar
thomwolf committed
566
567
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
568

thomwolf's avatar
thomwolf committed
569
    Parameters:
570
571
572
        config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. 
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``
thomwolf's avatar
thomwolf committed
592
593
594
595

            Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

thomwolf's avatar
thomwolf committed
596
597
598
            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
599
600
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
601
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
602
603
604
605
606
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
thomwolf's avatar
thomwolf committed
607
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
608
            Mask to avoid performing attention on padding token indices.
thomwolf's avatar
thomwolf committed
609
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
610
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
611
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
612
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
613
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
614
615
616
617
618
619
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertModel(BertPreTrainedModel):
620
    r"""
thomwolf's avatar
thomwolf committed
621
622
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
thomwolf's avatar
thomwolf committed
623
624
625
626
627
628
629
630
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
thomwolf's avatar
thomwolf committed
631
632
633
634
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
635
636
637
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
638
639
640

    Examples::

wangfei's avatar
wangfei committed
641
642
643
644
645
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
646
647

    """
thomwolf's avatar
thomwolf committed
648
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
649
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
650

thomwolf's avatar
thomwolf committed
651
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
652
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
653
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
654

655
        self.init_weights()
thomwolf's avatar
thomwolf committed
656

thomwolf's avatar
thomwolf committed
657
658
659
660
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
thomwolf's avatar
thomwolf committed
661
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
662

thomwolf's avatar
thomwolf committed
663
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
664
665
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
666
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
667
668
669
670
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

thomwolf's avatar
thomwolf committed
671
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
692
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
693
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
694
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
695
696
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
697
698
        if head_mask is not None:
            if head_mask.dim() == 1:
699
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
700
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
701
            elif head_mask.dim() == 2:
702
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
703
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
704
705
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
706

thomwolf's avatar
thomwolf committed
707
        embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
708
709
710
711
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
712
        pooled_output = self.pooler(sequence_output)
713

714
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
715
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
716
717


thomwolf's avatar
thomwolf committed
718
@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
thomwolf's avatar
thomwolf committed
719
720
    a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
721
class BertForPreTraining(BertPreTrainedModel):
722
    r"""
thomwolf's avatar
thomwolf committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
745
746
747
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
748
749
750

    Examples::

wangfei's avatar
wangfei committed
751
752
753
754
755
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForPreTraining.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, seq_relationship_scores = outputs[:2]
756

thomwolf's avatar
thomwolf committed
757
    """
thomwolf's avatar
thomwolf committed
758
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
759
        super(BertForPreTraining, self).__init__(config)
760

thomwolf's avatar
thomwolf committed
761
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
762
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
763

764
        self.init_weights()
thomwolf's avatar
thomwolf committed
765
766
767
768
769
770
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
771
772
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
773

thomwolf's avatar
thomwolf committed
774
775
776
777
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, position_ids=None, head_mask=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
778
779

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
780
781
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

782
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
783

thomwolf's avatar
thomwolf committed
784
785
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
786
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
787
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
788
            total_loss = masked_lm_loss + next_sentence_loss
789
            outputs = (total_loss,) + outputs
790
791

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
792
793


thomwolf's avatar
thomwolf committed
794
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
thomwolf's avatar
thomwolf committed
795
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
796
class BertForMaskedLM(BertPreTrainedModel):
797
    r"""
thomwolf's avatar
thomwolf committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
813
814
815
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
816
817
818

    Examples::

wangfei's avatar
wangfei committed
819
820
821
822
823
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMaskedLM.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
824

thomwolf's avatar
thomwolf committed
825
    """
thomwolf's avatar
thomwolf committed
826
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
827
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
828

thomwolf's avatar
thomwolf committed
829
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
830
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
831

832
        self.init_weights()
thomwolf's avatar
thomwolf committed
833
834
835
836
837
838
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
839
840
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
841

thomwolf's avatar
thomwolf committed
842
843
844
845
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                position_ids=None, head_mask=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
846
847

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
848
849
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
850
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
851
852
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
853
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
854
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
855
856

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
857
858


thomwolf's avatar
thomwolf committed
859
@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
thomwolf's avatar
thomwolf committed
860
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
861
class BertForNextSentencePrediction(BertPreTrainedModel):
862
    r"""
thomwolf's avatar
thomwolf committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Next sequence prediction (classification) loss.
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
878
879
880
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
881
882
883

    Examples::

wangfei's avatar
wangfei committed
884
885
886
887
888
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        seq_relationship_scores = outputs[0]
889

thomwolf's avatar
thomwolf committed
890
    """
thomwolf's avatar
thomwolf committed
891
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
892
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
893

thomwolf's avatar
thomwolf committed
894
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
895
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
896

897
        self.init_weights()
thomwolf's avatar
thomwolf committed
898

thomwolf's avatar
thomwolf committed
899
900
901
902
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None,
                position_ids=None, head_mask=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
903
904
        pooled_output = outputs[1]

905
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
906

907
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
908
909
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
910
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
911
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
912
913

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
914
915


thomwolf's avatar
thomwolf committed
916
@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
917
918
    the pooled output) e.g. for GLUE tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
919
class BertForSequenceClassification(BertPreTrainedModel):
920
    r"""
thomwolf's avatar
thomwolf committed
921
922
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
923
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
924
925
926
927
928
929
930
931
932
933
934
935
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
936
937
938
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
939
940
941

    Examples::

wangfei's avatar
wangfei committed
942
943
944
945
946
947
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
948

thomwolf's avatar
thomwolf committed
949
    """
thomwolf's avatar
thomwolf committed
950
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
951
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
952
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
953

thomwolf's avatar
thomwolf committed
954
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
955
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
956
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
957

958
        self.init_weights()
thomwolf's avatar
thomwolf committed
959

thomwolf's avatar
thomwolf committed
960
961
962
963
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
964
965
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
966
967
968
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

969
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
970

thomwolf's avatar
thomwolf committed
971
        if labels is not None:
972
973
974
975
976
977
978
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
979
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
980
981

        return outputs  # (loss), logits, (hidden_states), (attentions)
982
983


thomwolf's avatar
thomwolf committed
984
@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
985
986
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    BERT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
987
class BertForMultipleChoice(BertPreTrainedModel):
988
    r"""
thomwolf's avatar
thomwolf committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``
    
            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
thomwolf's avatar
thomwolf committed
1016
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
thomwolf's avatar
thomwolf committed
1017
1018
            Mask to avoid performing attention on padding token indices.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
thomwolf's avatar
thomwolf committed
1019
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
1020
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
1021
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
1022
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
1023
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1040
1041
1042
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1043
1044
1045

    Examples::

wangfei's avatar
wangfei committed
1046
1047
1048
1049
1050
1051
1052
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]
1053

1054
    """
thomwolf's avatar
thomwolf committed
1055
    def __init__(self, config):
1056
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1057

thomwolf's avatar
thomwolf committed
1058
        self.bert = BertModel(config)
1059
1060
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1061

1062
        self.init_weights()
1063

thomwolf's avatar
thomwolf committed
1064
1065
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1066
1067
        num_choices = input_ids.shape[1]

1068
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
thomwolf's avatar
thomwolf committed
1069
        flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1070
1071
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1072
1073
        outputs = self.bert(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids,
                            attention_mask=flat_attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1074
1075
        pooled_output = outputs[1]

1076
1077
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1078
        reshaped_logits = logits.view(-1, num_choices)
1079

1080
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1081

1082
1083
1084
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1085
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1086
1087

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1088
1089


thomwolf's avatar
thomwolf committed
1090
@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
1091
1092
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1093
class BertForTokenClassification(BertPreTrainedModel):
1094
    r"""
thomwolf's avatar
thomwolf committed
1095
1096
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
LysandreJik's avatar
LysandreJik committed
1097
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1108
1109
1110
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1111
1112
1113

    Examples::

wangfei's avatar
wangfei committed
1114
1115
1116
1117
1118
1119
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]
1120

1121
    """
thomwolf's avatar
thomwolf committed
1122
    def __init__(self, config):
1123
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1124
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1125

thomwolf's avatar
thomwolf committed
1126
        self.bert = BertModel(config)
1127
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1128
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1129

1130
        self.init_weights()
1131

thomwolf's avatar
thomwolf committed
1132
1133
1134
1135
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1136
1137
        sequence_output = outputs[0]

1138
1139
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1140

1141
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1142
1143
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1144
1145
1146
1147
1148
1149
1150
1151
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1152
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1153

thomwolf's avatar
thomwolf committed
1154
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1155
1156


thomwolf's avatar
thomwolf committed
1157
@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
thomwolf's avatar
thomwolf committed
1158
1159
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1160
class BertForQuestionAnswering(BertPreTrainedModel):
1161
    r"""
thomwolf's avatar
thomwolf committed
1162
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1163
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1164
1165
1166
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1167
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1182
1183
1184
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1185
1186
1187

    Examples::

wangfei's avatar
wangfei committed
1188
1189
1190
1191
1192
1193
1194
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
1195

thomwolf's avatar
thomwolf committed
1196
    """
thomwolf's avatar
thomwolf committed
1197
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1198
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1199
1200
1201
1202
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1203

1204
        self.init_weights()
thomwolf's avatar
thomwolf committed
1205

thomwolf's avatar
thomwolf committed
1206
1207
1208
1209
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, position_ids=None, head_mask=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1210
1211
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1212
1213
1214
1215
1216
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1217
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1233
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1234
1235

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)