sd.py 46.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
comfyanonymous's avatar
comfyanonymous committed
4

comfyanonymous's avatar
comfyanonymous committed
5
6
from . import sd1_clip
from . import sd2_clip
7
from comfy import model_management
8
9
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
10
import yaml
comfyanonymous's avatar
comfyanonymous committed
11
from .cldm import cldm
12
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
13
14

from . import utils
15
from . import clip_vision
16
from . import gligen
17
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
from . import model_base
19

20
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
21
22
23
24
25
26
    replace_prefix = {"model.diffusion_model.": "diffusion_model."}
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), sd.keys())))
        for x in replace:
            sd[x[1]] = sd.pop(x[0])

comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
31
32
33
34
35
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
36
37
38
39
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
40

41
    sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24)
42

comfyanonymous's avatar
comfyanonymous committed
43
44
45
46
47
48
49
50
51
52
53
54
55
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

56
57
58
59
60
61
62
63
64
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
65
LORA_UNET_MAP_ATTENTIONS = {
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}

comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
86
87

def load_lora(path, to_load):
88
    lora = utils.load_torch_file(path, safe_load=True)
89
90
91
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

98
99
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
100
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
101

102
        if A_name in lora.keys():
103
104
105
106
107
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
108
109
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
110

comfyanonymous's avatar
comfyanonymous committed
111
112

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
117
118
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
119
        if hada_w1_a_name in lora.keys():
120
121
122
123
124
125
126
127
128
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
129
130
131
132
133
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

182
183
184
185
186
187
188
189
190
191
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
192
        tk = "diffusion_model.input_blocks.{}.1".format(b)
193
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
194
        for c in LORA_UNET_MAP_ATTENTIONS:
195
196
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
197
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
198
                key_map[lora_key] = k
199
200
201
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
202
    for c in LORA_UNET_MAP_ATTENTIONS:
comfyanonymous's avatar
comfyanonymous committed
203
        k = "diffusion_model.middle_block.1.{}.weight".format(c)
204
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
205
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
206
            key_map[lora_key] = k
207
208
    counter = 3
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
209
        tk = "diffusion_model.output_blocks.{}.1".format(b)
210
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
211
        for c in LORA_UNET_MAP_ATTENTIONS:
212
213
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
214
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
215
                key_map[lora_key] = k
216
217
218
219
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
220
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
221
    for b in range(24):
222
223
224
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
225
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
226
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
227

comfyanonymous's avatar
comfyanonymous committed
228
229
230
231
232

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
233
        tk = "diffusion_model.input_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
comfyanonymous's avatar
comfyanonymous committed
252
        tk = "diffusion_model.middle_block.{}".format(b)
comfyanonymous's avatar
comfyanonymous committed
253
254
255
256
257
258
259
260
261
262
263
264
265
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
comfyanonymous's avatar
comfyanonymous committed
266
        tk = "diffusion_model.output_blocks.{}.0".format(b)
comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

283
284
    return key_map

285

286
class ModelPatcher:
287
288
    def __init__(self, model, size=0):
        self.size = size
289
290
291
        self.model = model
        self.patches = []
        self.backup = {}
292
        self.model_options = {"transformer_options":{}}
293
294
295
296
297
298
299
300
301
302
303
304
        self.model_size()

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
        return size
305
306

    def clone(self):
307
        n = ModelPatcher(self.model, self.size)
308
        n.patches = self.patches[:]
309
        n.model_options = copy.deepcopy(self.model_options)
310
311
        return n

312
313
314
    def set_model_tomesd(self, ratio):
        self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}

315
316
317
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
        self.model_options["sampler_cfg_function"] = sampler_cfg_function

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)

341
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
342
        return self.model.get_dtype()
343

344
345
346
347
    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
348
            if k in model_sd:
349
350
351
352
353
354
355
356
357
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
358
                key = k
comfyanonymous's avatar
comfyanonymous committed
359
                if key not in model_sd:
360
361
362
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
363
364
365
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
366
367

                alpha = p[0]
comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
373
374
375
376
377
378

                if len(v) == 4: #lora/locon
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
406
407
408
409
410
411
412
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
413
414
415
416
417
418
419
420
421
422
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
423
424
425
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
426
427
        keys = list(self.backup.keys())
        for k in keys:
428
            model_sd[k][:] = self.backup[k]
429
430
            del self.backup[k]

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
448
449
450


class CLIP:
451
452
453
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
454
        self.target_clip = config["target"]
455
456
457
458
459
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
460
        if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
comfyanonymous's avatar
comfyanonymous committed
461
462
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
comfyanonymous's avatar
comfyanonymous committed
463
        elif self.target_clip.endswith("FrozenCLIPEmbedder"):
comfyanonymous's avatar
comfyanonymous committed
464
465
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
466
467

        self.cond_stage_model = clip(**(params))
468
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
469
        self.patcher = ModelPatcher(self.cond_stage_model)
470
        self.layer_idx = None
471
472
473
474
475
476
477

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
478
        n.layer_idx = self.layer_idx
479
480
        return n

481
482
483
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

484
485
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
486

487
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
488
        self.layer_idx = layer_idx
489

490
491
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
492

493
    def encode_from_tokens(self, tokens, return_pooled=False):
494
495
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
496
497
498
499
500
501
502
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
503
504
505
506
        if return_pooled:
            eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__)
            pooled = cond[:, eos_token_index]
            return cond, pooled
comfyanonymous's avatar
comfyanonymous committed
507
508
        return cond

509
    def encode(self, text):
510
        tokens = self.tokenize(text)
511
512
        return self.encode_from_tokens(tokens)

comfyanonymous's avatar
comfyanonymous committed
513
class VAE:
514
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
515
516
517
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
518
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
519
        else:
520
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
521
        self.first_stage_model = self.first_stage_model.eval()
522
523
524
525
526
527
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
528
        self.scale_factor = scale_factor
529
530
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
531
532
        self.device = device

533
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
534
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
535
536
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
537
        pbar = utils.ProgressBar(steps)
538

539
540
        decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
        output = torch.clamp((
541
542
543
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
544
545
546
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

547
548
549
550
551
552
553
554
555
556
557
558
559
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample() * self.scale_factor
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

560
    def decode(self, samples_in):
561
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
562
        self.first_stage_model = self.first_stage_model.to(self.device)
563
        try:
564
565
566
567
568
569
570
571
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
572
573
574
575
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
576
577
578
579
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

580
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
581
582
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
583
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
584
585
586
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
587
    def encode(self, pixel_samples):
588
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
589
        self.first_stage_model = self.first_stage_model.to(self.device)
590
591
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
592
593
594
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
595
596
597
598
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu() * self.scale_factor
599

600
601
602
603
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
604
605
606
        self.first_stage_model = self.first_stage_model.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
607
608
609
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
610
611
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
612
613
        self.first_stage_model = self.first_stage_model.cpu()
        return samples
614

BlenderNeko's avatar
BlenderNeko committed
615
def broadcast_image_to(tensor, target_batch_size, batched_number):
616
    current_batch_size = tensor.shape[0]
617
    #print(current_batch_size, target_batch_size)
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
633
class ControlNet:
634
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
635
636
637
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
638
        self.strength = 1.0
639
640
        if device is None:
            device = model_management.get_torch_device()
641
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
642
        self.previous_controlnet = None
643
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
644

645
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
646
647
        control_prev = None
        if self.previous_controlnet is not None:
648
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
649

650
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
651
652
653
654
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
655
656
657
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
658
659
660
661
662
663

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

664
        with precision_scope(model_management.get_autocast_device(self.device)):
665
            self.control_model = model_management.load_if_low_vram(self.control_model)
666
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
667
            self.control_model = model_management.unload_if_low_vram(self.control_model)
668
        out = {'middle':[], 'output': []}
669
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
670
671

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
672
673
674
675
676
677
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
678
            x = control[i]
679
680
681
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

682
            x *= self.strength
683
684
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
685

comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
691
692
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
693
        return out
comfyanonymous's avatar
comfyanonymous committed
694

695
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
696
        self.cond_hint_original = cond_hint
697
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
698
699
        return self

comfyanonymous's avatar
comfyanonymous committed
700
701
702
703
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
704
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
705
706
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
707
708
709
710
711
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
712
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
713
        c.cond_hint_original = self.cond_hint_original
714
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
715
716
        return c

717
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
718
719
        out = []
        if self.previous_controlnet is not None:
720
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
721
722
723
        out.append(self.control_model)
        return out

724
def load_controlnet(ckpt_path, model=None):
725
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
comfyanonymous's avatar
comfyanonymous committed
726
727
728
729
730
731
732
733
734
735
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
736
737
738
739
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
740
741

    context_dim = controlnet_data[key].shape[1]
742
743

    use_fp16 = False
744
    if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
745
746
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
747
748
749
750
751
752
753
754
755
756
757
758
759
    if context_dim == 768:
        #SD1.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_heads=8,
                                        use_spatial_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
760
                                        use_checkpoint=False,
comfyanonymous's avatar
comfyanonymous committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
                                        legacy=False,
                                        use_fp16=use_fp16)
    else:
        #SD2.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_head_channels=64,
                                        use_spatial_transformer=True,
                                        use_linear_in_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
777
                                        use_checkpoint=False,
comfyanonymous's avatar
comfyanonymous committed
778
779
                                        legacy=False,
                                        use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
780
    if pth:
781
782
783
784
785
786
787
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
788
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
789
790
791
792
793
794
795
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
796
797
798
799
800
801
802
803
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

804
805
806
    if use_fp16:
        control_model = control_model.half()

807
808
809
810
811
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
812
813
    return control

814
class T2IAdapter:
815
    def __init__(self, t2i_model, channels_in, device=None):
816
817
818
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
819
820
        if device is None:
            device = model_management.get_torch_device()
821
822
823
824
825
826
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

827
    def get_control(self, x_noisy, t, cond_txt, batched_number):
828
829
        control_prev = None
        if self.previous_controlnet is not None:
830
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
831
832
833
834

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
835
            self.control_input = None
836
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
837
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
838
839
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
840
841
842
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
843
844
845
846
847
848
849
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
850
        autocast_enabled = torch.is_autocast_enabled()
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

898
    def get_models(self):
899
900
        out = []
        if self.previous_controlnet is not None:
901
            out += self.previous_controlnet.get_models()
902
903
        return out

904
def load_t2i_adapter(t2i_data):
905
    keys = t2i_data.keys()
906
    if "body.0.in_conv.weight" in keys:
907
908
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
909
    elif 'conv_in.weight' in keys:
910
911
        cin = t2i_data['conv_in.weight'].shape[1]
        model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
912
913
    else:
        return None
914
915
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
916

917
918
919
920
921
922
923
924
925
926

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
927
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
928
929
930
931
932
933
934
935
936
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


937
def load_clip(ckpt_path, embedding_directory=None):
938
    clip_data = utils.load_torch_file(ckpt_path, safe_load=True)
939
940
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
comfyanonymous's avatar
comfyanonymous committed
941
        config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
942
    else:
comfyanonymous's avatar
comfyanonymous committed
943
        config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
944
945
946
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
947

948
def load_gligen(ckpt_path):
949
    data = utils.load_torch_file(ckpt_path, safe_load=True)
950
951
952
953
954
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
955
956
957
958
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
959
960
961
962
963
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

964
965
966
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
967
968
969
970
971
972
973
974
975
976
977
978
979
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
980

comfyanonymous's avatar
comfyanonymous committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
995
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
996
997
998
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

comfyanonymous's avatar
comfyanonymous committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
        model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
        model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
    else:
        model = model_base.BaseModel(unet_config, v_prediction=v_prediction)

    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
    model = load_model_weights(model, state_dict, verbose=False, load_state_dict_to=load_state_dict_to)
1009
1010
1011
1012

    if fp16:
        model = model.half()

1013
    return (ModelPatcher(model), clip, vae)
1014
1015


1016
1017
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1018
1019
    sd_keys = sd.keys()
    clip = None
1020
    clipvision = None
1021
1022
    vae = None

1023
1024
    fp16 = model_management.should_use_fp16()

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE()
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
        clip_config = {}
        if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
comfyanonymous's avatar
comfyanonymous committed
1038
            clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
1039
        else:
comfyanonymous's avatar
comfyanonymous committed
1040
            clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
1041
1042
1043
1044
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight"
    noise_aug_config = None
    if clipvision_key in sd_keys:
        size = sd[clipvision_key].shape[1]

        if output_clipvision:
            clipvision = clip_vision.load_clipvision_from_sd(sd)

        noise_aug_key = "noise_augmentor.betas"
        if noise_aug_key in sd_keys:
            noise_aug_config = {}
            params = {}
            noise_schedule_config = {}
            noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
            noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
            params["noise_schedule_config"] = noise_schedule_config
comfyanonymous's avatar
comfyanonymous committed
1061
            noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
1062
1063
1064
1065
1066
1067
            if size == 1280: #h
                params["timestep_dim"] = 1024
            elif size == 1024: #l
                params["timestep_dim"] = 768
            noise_aug_config['params'] = params

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    sd_config = {
        "linear_start": 0.00085,
        "linear_end": 0.012,
        "num_timesteps_cond": 1,
        "log_every_t": 200,
        "timesteps": 1000,
        "first_stage_key": "jpg",
        "cond_stage_key": "txt",
        "image_size": 64,
        "channels": 4,
        "cond_stage_trainable": False,
        "monitor": "val/loss_simple_ema",
        "scale_factor": 0.18215,
        "use_ema": False,
    }

    unet_config = {
1085
        "use_checkpoint": False,
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        "image_size": 32,
        "out_channels": 4,
        "attention_resolutions": [
            4,
            2,
            1
        ],
        "num_res_blocks": 2,
        "channel_mult": [
            1,
            2,
            4,
            4
        ],
        "use_spatial_transformer": True,
        "transformer_depth": 1,
        "legacy": False
    }

comfyanonymous's avatar
comfyanonymous committed
1105
    if len(sd['model.diffusion_model.input_blocks.4.1.proj_in.weight'].shape) == 2:
1106
1107
1108
1109
1110
        unet_config['use_linear_in_transformer'] = True

    unet_config["use_fp16"] = fp16
    unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
    unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
comfyanonymous's avatar
comfyanonymous committed
1111
    unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
1112

comfyanonymous's avatar
comfyanonymous committed
1113
    sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
1114

comfyanonymous's avatar
comfyanonymous committed
1115
1116
    unclip_model = False
    inpaint_model = False
1117
1118
1119
1120
1121
    if noise_aug_config is not None: #SD2.x unclip model
        sd_config["noise_aug_config"] = noise_aug_config
        sd_config["image_size"] = 96
        sd_config["embedding_dropout"] = 0.25
        sd_config["conditioning_key"] = 'crossattn-adm'
comfyanonymous's avatar
comfyanonymous committed
1122
        unclip_model = True
1123
    elif unet_config["in_channels"] > 4: #inpainting model
1124
1125
        sd_config["conditioning_key"] = "hybrid"
        sd_config["finetune_keys"] = None
comfyanonymous's avatar
comfyanonymous committed
1126
        inpaint_model = True
1127
1128
1129
    else:
        sd_config["conditioning_key"] = "crossattn"

comfyanonymous's avatar
comfyanonymous committed
1130
    if unet_config["context_dim"] == 768:
1131
        unet_config["num_heads"] = 8 #SD1.x
comfyanonymous's avatar
comfyanonymous committed
1132
1133
    else:
        unet_config["num_head_channels"] = 64 #SD2.x
1134

1135
1136
1137
1138
1139
    unclip = 'model.diffusion_model.label_emb.0.0.weight'
    if unclip in sd_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = sd[unclip].shape[1]

comfyanonymous's avatar
comfyanonymous committed
1140
    v_prediction = False
comfyanonymous's avatar
comfyanonymous committed
1141
1142
1143
1144
    if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
        k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
        out = sd[k]
        if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
comfyanonymous's avatar
comfyanonymous committed
1145
            v_prediction = True
comfyanonymous's avatar
comfyanonymous committed
1146
            sd_config["parameterization"] = 'v'
1147

comfyanonymous's avatar
comfyanonymous committed
1148
1149
1150
1151
1152
1153
1154
    if inpaint_model:
        model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
    elif unclip_model:
        model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
    else:
        model = model_base.BaseModel(unet_config, v_prediction=v_prediction)

1155
1156
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)

1157
1158
1159
    if fp16:
        model = model.half()

1160
    return (ModelPatcher(model), clip, vae, clipvision)