sd1_clip.py 21.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
9
from . import model_management
import contextlib
comfyanonymous's avatar
comfyanonymous committed
10

11
12
13
14
15
16
17
18
19
20
21
22
def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

comfyanonymous's avatar
comfyanonymous committed
23
24
class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
25
26
27
        to_encode = list()
        max_token_len = 0
        has_weights = False
comfyanonymous's avatar
comfyanonymous committed
28
        for x in token_weight_pairs:
29
            tokens = list(map(lambda a: a[0], x))
30
31
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
32
33
            to_encode.append(tokens)

34
35
36
37
        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

38
        out, pooled = self.encode(to_encode)
39
40
        if pooled is not None:
            first_pooled = pooled[0:1].cpu()
41
        else:
42
            first_pooled = pooled
43
44

        output = []
45
        for k in range(0, sections):
46
            z = out[k:k+1]
47
48
49
50
51
52
53
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
54
55
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
56
        if (len(output) == 0):
57
58
            return out[-1:].cpu(), first_pooled
        return torch.cat(output, dim=-2).cpu(), first_pooled
comfyanonymous's avatar
comfyanonymous committed
59

60
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
66
67
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
68
69
70
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None,
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407},layer_norm_hidden_state=True, config_class=CLIPTextConfig,
                 model_class=CLIPTextModel, inner_name="text_model"):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
71
72
        super().__init__()
        assert layer in self.LAYERS
73
        self.num_layers = 12
comfyanonymous's avatar
comfyanonymous committed
74
        if textmodel_path is not None:
75
            self.transformer = model_class.from_pretrained(textmodel_path)
comfyanonymous's avatar
comfyanonymous committed
76
77
78
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
79
            config = config_class.from_json_file(textmodel_json_config)
80
            self.num_layers = config.num_hidden_layers
81
            with comfy.ops.use_comfy_ops(device, dtype):
82
                with modeling_utils.no_init_weights():
83
                    self.transformer = model_class(config)
comfyanonymous's avatar
comfyanonymous committed
84

85
        self.inner_name = inner_name
86
87
        if dtype is not None:
            self.transformer.to(dtype)
88
89
90
91
92
            inner_model = getattr(self.transformer, self.inner_name)
            if hasattr(inner_model, "embeddings"):
                inner_model.embeddings.to(torch.float32)
            else:
                self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(torch.float32))
93

comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
98
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
99
        self.special_tokens = special_tokens
100
101
        self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
102
        self.enable_attention_masks = False
103

104
        self.layer_norm_hidden_state = layer_norm_hidden_state
comfyanonymous's avatar
comfyanonymous committed
105
106
        if layer == "hidden":
            assert layer_idx is not None
107
            assert abs(layer_idx) <= self.num_layers
comfyanonymous's avatar
comfyanonymous committed
108
            self.clip_layer(layer_idx)
109
        self.layer_default = (self.layer, self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
118
        if abs(layer_idx) >= self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
119
120
121
122
123
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

124
125
126
127
    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

128
129
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
130
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
131
132
133
134
135
136
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
137
138
                    if y == token_dict_size: #EOS token
                        y = -1
139
140
                    tokens_temp += [y]
                else:
141
142
143
144
145
146
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
147
            while len(tokens_temp) < len(x):
148
                tokens_temp += [self.special_tokens["pad"]]
149
150
            out_tokens += [tokens_temp]

151
        n = token_dict_size
152
        if len(embedding_weights) > 0:
153
154
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
155
156
157
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
158
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
159
            self.transformer.set_input_embeddings(new_embedding)
160
161
162
163
164
165

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
166

comfyanonymous's avatar
comfyanonymous committed
167
    def forward(self, tokens):
168
        backup_embeds = self.transformer.get_input_embeddings()
169
        device = backup_embeds.weight.device
170
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
171
172
        tokens = torch.LongTensor(tokens).to(device)

173
        if getattr(self.transformer, self.inner_name).final_layer_norm.weight.dtype != torch.float32:
174
            precision_scope = torch.autocast
comfyanonymous's avatar
comfyanonymous committed
175
        else:
176
            precision_scope = lambda a, b: contextlib.nullcontext(a)
177

178
        with precision_scope(model_management.get_autocast_device(device), dtype=torch.float32):
179
180
181
182
183
184
185
186
187
188
189
            attention_mask = None
            if self.enable_attention_masks:
                attention_mask = torch.zeros_like(tokens)
                max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
                for x in range(attention_mask.shape[0]):
                    for y in range(attention_mask.shape[1]):
                        attention_mask[x, y] = 1
                        if tokens[x, y] == max_token:
                            break

            outputs = self.transformer(input_ids=tokens, attention_mask=attention_mask, output_hidden_states=self.layer=="hidden")
190
191
192
193
194
195
196
197
198
            self.transformer.set_input_embeddings(backup_embeds)

            if self.layer == "last":
                z = outputs.last_hidden_state
            elif self.layer == "pooled":
                z = outputs.pooler_output[:, None, :]
            else:
                z = outputs.hidden_states[self.layer_idx]
                if self.layer_norm_hidden_state:
199
200
201
202
203
204
                    z = getattr(self.transformer, self.inner_name).final_layer_norm(z)

            if hasattr(outputs, "pooler_output"):
                pooled_output = outputs.pooler_output.float()
            else:
                pooled_output = None
205

206
            if self.text_projection is not None and pooled_output is not None:
207
                pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
208
        return z.float(), pooled_output
comfyanonymous's avatar
comfyanonymous committed
209
210
211
212

    def encode(self, tokens):
        return self(tokens)

213
    def load_sd(self, sd):
214
215
216
217
        if "text_projection" in sd:
            self.text_projection[:] = sd.pop("text_projection")
        if "text_projection.weight" in sd:
            self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
218
219
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

297
298
299
300
301
302
303
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
304

305
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
306
307
308
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

309
310
    embedding_directory = expand_directory_list(embedding_directory)

311
312
    valid_file = None
    for embed_dir in embedding_directory:
313
314
315
316
317
318
319
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
320
321
322
323
324
325
326
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
327
        else:
328
329
330
331
332
333
334
335
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
336

337
338
    embed_out = None

339
340
341
342
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
343
        else:
344
            if 'weights_only' in torch.load.__code__.co_varnames:
345
346
347
348
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
349
350
351
352
353
354
355
356
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

357
358
359
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
360
361
362
363
364
365
366
367
368
369
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
370
371
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
372
373
        else:
            values = embed.values()
374
            embed_out = next(iter(values))
375
    return embed_out
376

377
class SDTokenizer:
378
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
comfyanonymous's avatar
comfyanonymous committed
379
380
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
381
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
comfyanonymous's avatar
comfyanonymous committed
382
        self.max_length = max_length
383

comfyanonymous's avatar
comfyanonymous committed
384
        empty = self.tokenizer('')["input_ids"]
385
386
387
388
389
390
391
392
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
comfyanonymous's avatar
comfyanonymous committed
393
        self.pad_with_end = pad_with_end
394
395
        self.pad_to_max_length = pad_to_max_length

comfyanonymous's avatar
comfyanonymous committed
396
397
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
398
399
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
400
        self.embedding_identifier = "embedding:"
401
        self.embedding_size = embedding_size
402
        self.embedding_key = embedding_key
403

404
    def _try_get_embedding(self, embedding_name:str):
405
406
407
408
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
409
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
410
411
412
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
413
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
414
415
416
417
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


418
    def tokenize_with_weights(self, text:str, return_word_ids=False):
419
420
421
422
423
424
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
425
426
427
428
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
429
430
431
432

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

433
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
434
        tokens = []
435
436
437
438
439
440
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
441
442
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
443
                    if embed is None:
444
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
445
                    else:
446
                        if len(embed.shape) == 1:
447
                            tokens.append([(embed, weight)])
448
                        else:
449
450
451
452
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
453
                    else:
454
455
                        continue
                #parse word
456
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
457

458
459
        #reshape token array to CLIP input size
        batched_tokens = []
460
461
462
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
463
464
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
465
466
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
467

468
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
469
470
471
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
472
473
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
474
                        batch.append((self.end_token, 1.0, 0))
475
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
476
                    #add end token and pad
477
                    else:
BlenderNeko's avatar
BlenderNeko committed
478
                        batch.append((self.end_token, 1.0, 0))
479
480
                        if self.pad_to_max_length:
                            batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
BlenderNeko's avatar
BlenderNeko committed
481
                    #start new batch
482
483
484
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
485
                    batched_tokens.append(batch)
486
                else:
487
488
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
489

490
        #fill last batch
491
492
493
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
            batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
comfyanonymous's avatar
comfyanonymous committed
494

495
496
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
497

498
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
499
500
501
502


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520


class SD1Tokenizer:
    def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)


class SD1ClipModel(torch.nn.Module):
521
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
522
523
524
        super().__init__()
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
525
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
526
527
528
529
530
531
532
533
534
535
536
537
538
539

    def clip_layer(self, layer_idx):
        getattr(self, self.clip).clip_layer(layer_idx)

    def reset_clip_layer(self):
        getattr(self, self.clip).reset_clip_layer()

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
        out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out, pooled

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)