sd1_clip.py 9.94 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os

from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig
import torch

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
        z_empty = self.encode(self.empty_tokens)
        output = []
        for x in token_weight_pairs:
            tokens = [list(map(lambda a: a[0], x))]
            z = self.encode(tokens)
            for i in range(len(z)):
                for j in range(len(z[i])):
                    weight = x[j][1]
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
            output += [z]
        if (len(output) == 0):
            return self.encode(self.empty_tokens)
        return torch.cat(output, dim=-2)

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
            self.transformer = CLIPTextModel(config)

        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) <= 12
            self.clip_layer(layer_idx)

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
        if abs(layer_idx) >= 12:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
        next_new_token = token_dict_size = current_embeds.weight.shape[0]
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
                    tokens_temp += [y]
                else:
                    embedding_weights += [y]
                    tokens_temp += [next_new_token]
                    next_new_token += 1
            out_tokens += [tokens_temp]

        if len(embedding_weights) > 0:
            new_embedding = torch.nn.Embedding(next_new_token, current_embeds.weight.shape[1])
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:]
            n = token_dict_size
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            self.transformer.set_input_embeddings(new_embedding)
        return out_tokens

comfyanonymous's avatar
comfyanonymous committed
92
    def forward(self, tokens):
93
94
        backup_embeds = self.transformer.get_input_embeddings()
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
95
96
        tokens = torch.LongTensor(tokens).to(self.device)
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
97
        self.transformer.set_input_embeddings(backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        if self.layer == "last":
            z = outputs.last_hidden_state
        elif self.layer == "pooled":
            z = outputs.pooler_output[:, None, :]
        else:
            z = outputs.hidden_states[self.layer_idx]
            z = self.transformer.text_model.final_layer_norm(z)

        return z

    def encode(self, tokens):
        return self(tokens)

def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def load_embed(embedding_name, embedding_directory):
    embed_path = os.path.join(embedding_directory, embedding_name)
    if not os.path.isfile(embed_path):
        extensions = ['.safetensors', '.pt', '.bin']
        valid_file = None
        for x in extensions:
            t = embed_path + x
            if os.path.isfile(t):
                valid_file = t
                break
        if valid_file is None:
            return None
        else:
            embed_path = valid_file

    if embed_path.lower().endswith(".safetensors"):
        import safetensors.torch
        embed = safetensors.torch.load_file(embed_path, device="cpu")
    else:
        embed = torch.load(embed_path, weights_only=True, map_location="cpu")
    if 'string_to_param' in embed:
        values = embed['string_to_param'].values()
    else:
        values = embed.values()
    return next(iter(values))

comfyanonymous's avatar
comfyanonymous committed
196
class SD1Tokenizer:
197
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
198
199
200
201
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
202
203
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
204
205
206
207
208
209
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
210
211
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
comfyanonymous's avatar
comfyanonymous committed
212
213
214
215
216
217
218

    def tokenize_with_weights(self, text):
        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

        tokens = []
        for t in parsed_weights:
219
            to_tokenize = unescape_important(t[0]).replace("\n", " ").split(' ')
220
221
            while len(to_tokenize) > 0:
                word = to_tokenize.pop(0)
222
223
224
225
226
                temp_tokens = []
                embedding_identifier = "embedding:"
                if word.startswith(embedding_identifier) and self.embedding_directory is not None:
                    embedding_name = word[len(embedding_identifier):].strip('\n')
                    embed = load_embed(embedding_name, self.embedding_directory)
227
228
229
230
231
232
233
                    if embed is None:
                        stripped = embedding_name.strip(',')
                        if len(stripped) < len(embedding_name):
                            embed = load_embed(stripped, self.embedding_directory)
                            if embed is not None:
                                to_tokenize.insert(0, embedding_name[len(stripped):])

234
235
236
237
238
239
                    if embed is not None:
                        if len(embed.shape) == 1:
                            temp_tokens += [(embed, t[1])]
                        else:
                            for x in range(embed.shape[0]):
                                temp_tokens += [(embed[x], t[1])]
240
241
                    else:
                        print("warning, embedding:{} does not exist, ignoring".format(embedding_name))
242
243
244
245
246
247
248
249
250
251
252
                elif len(word) > 0:
                    tt = self.tokenizer(word)["input_ids"][1:-1]
                    for x in tt:
                        temp_tokens += [(x, t[1])]
                tokens_left = self.max_tokens_per_section - (len(tokens) % self.max_tokens_per_section)

                #try not to split words in different sections
                if tokens_left < len(temp_tokens) and len(temp_tokens) < (self.max_word_length):
                    for x in range(tokens_left):
                        tokens += [(self.end_token, 1.0)]
                tokens += temp_tokens
comfyanonymous's avatar
comfyanonymous committed
253
254

        out_tokens = []
255
256
        for x in range(0, len(tokens), self.max_tokens_per_section):
            o_token = [(self.start_token, 1.0)] + tokens[x:min(self.max_tokens_per_section + x, len(tokens))]
comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
264
265
266
267
268
            o_token += [(self.end_token, 1.0)]
            if self.pad_with_end:
                o_token +=[(self.end_token, 1.0)] * (self.max_length - len(o_token))
            else:
                o_token +=[(0, 1.0)] * (self.max_length - len(o_token))

            out_tokens += [o_token]

        return out_tokens

    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))