sd1_clip.py 17.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
9
from . import model_management
import contextlib
comfyanonymous's avatar
comfyanonymous committed
10
11
12

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
13
        to_encode = list(self.empty_tokens)
comfyanonymous's avatar
comfyanonymous committed
14
        for x in token_weight_pairs:
15
16
17
18
19
20
21
22
23
24
25
            tokens = list(map(lambda a: a[0], x))
            to_encode.append(tokens)

        out, pooled = self.encode(to_encode)
        z_empty = out[0:1]
        if pooled.shape[0] > 1:
            first_pooled = pooled[1:2]
        else:
            first_pooled = pooled[0:1]

        output = []
26
27
        for k in range(1, out.shape[0]):
            z = out[k:k+1]
comfyanonymous's avatar
comfyanonymous committed
28
29
            for i in range(len(z)):
                for j in range(len(z[i])):
30
                    weight = token_weight_pairs[k - 1][j][1]
comfyanonymous's avatar
comfyanonymous committed
31
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
32
33
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
34
        if (len(output) == 0):
35
            return z_empty.cpu(), first_pooled.cpu()
36
        return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
46
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
47
48
        super().__init__()
        assert layer in self.LAYERS
49
        self.num_layers = 12
comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
56
            self.num_layers = config.num_hidden_layers
57
            with comfy.ops.use_comfy_ops(device, dtype):
58
59
                with modeling_utils.no_init_weights():
                    self.transformer = CLIPTextModel(config)
comfyanonymous's avatar
comfyanonymous committed
60

61
62
        if dtype is not None:
            self.transformer.to(dtype)
63
64
65
            self.transformer.text_model.embeddings.token_embedding.to(torch.float32)
            self.transformer.text_model.embeddings.position_embedding.to(torch.float32)

comfyanonymous's avatar
comfyanonymous committed
66
67
68
69
70
71
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
72
73
74
        self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))

75
        self.layer_norm_hidden_state = True
comfyanonymous's avatar
comfyanonymous committed
76
77
        if layer == "hidden":
            assert layer_idx is not None
78
            assert abs(layer_idx) <= self.num_layers
comfyanonymous's avatar
comfyanonymous committed
79
            self.clip_layer(layer_idx)
80
        self.layer_default = (self.layer, self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
86
87
88

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
89
        if abs(layer_idx) >= self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
90
91
92
93
94
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

95
96
97
98
    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

99
100
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
101
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
102
103
104
105
106
107
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
108
109
                    if y == token_dict_size: #EOS token
                        y = -1
110
111
                    tokens_temp += [y]
                else:
112
113
114
115
116
117
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
118
119
            while len(tokens_temp) < len(x):
                tokens_temp += [self.empty_tokens[0][-1]]
120
121
            out_tokens += [tokens_temp]

122
        n = token_dict_size
123
        if len(embedding_weights) > 0:
124
125
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
126
127
128
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
129
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
130
            self.transformer.set_input_embeddings(new_embedding)
131
132
133
134
135
136

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
137

comfyanonymous's avatar
comfyanonymous committed
138
    def forward(self, tokens):
139
        backup_embeds = self.transformer.get_input_embeddings()
140
        device = backup_embeds.weight.device
141
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
142
143
        tokens = torch.LongTensor(tokens).to(device)

144
        if self.transformer.text_model.final_layer_norm.weight.dtype != torch.float32:
145
            precision_scope = torch.autocast
comfyanonymous's avatar
comfyanonymous committed
146
        else:
147
            precision_scope = lambda a, b: contextlib.nullcontext(a)
148

149
        with precision_scope(model_management.get_autocast_device(device), torch.float32):
150
151
152
153
154
155
156
157
158
159
160
161
162
163
            outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
            self.transformer.set_input_embeddings(backup_embeds)

            if self.layer == "last":
                z = outputs.last_hidden_state
            elif self.layer == "pooled":
                z = outputs.pooler_output[:, None, :]
            else:
                z = outputs.hidden_states[self.layer_idx]
                if self.layer_norm_hidden_state:
                    z = self.transformer.text_model.final_layer_norm(z)

            pooled_output = outputs.pooler_output
            if self.text_projection is not None:
164
                pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
165
        return z.float(), pooled_output.float()
comfyanonymous's avatar
comfyanonymous committed
166
167
168
169

    def encode(self, tokens):
        return self(tokens)

170
    def load_sd(self, sd):
171
172
173
174
        if "text_projection" in sd:
            self.text_projection[:] = sd.pop("text_projection")
        if "text_projection.weight" in sd:
            self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
175
176
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

254
255
256
257
258
259
260
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
261

262
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
263
264
265
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

266
267
    embedding_directory = expand_directory_list(embedding_directory)

268
269
270
271
272
273
274
275
276
277
    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.join(embed_dir, embedding_name)
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
278
        else:
279
280
281
282
283
284
285
286
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
287

288
289
    embed_out = None

290
291
292
293
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
294
        else:
295
            if 'weights_only' in torch.load.__code__.co_varnames:
296
297
298
299
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
300
301
302
303
304
305
306
307
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

308
309
310
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
311
312
313
314
315
316
317
318
319
320
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
321
322
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
323
324
        else:
            values = embed.values()
325
            embed_out = next(iter(values))
326
    return embed_out
327

comfyanonymous's avatar
comfyanonymous committed
328
class SD1Tokenizer:
329
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'):
comfyanonymous's avatar
comfyanonymous committed
330
331
332
333
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
334
335
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
336
337
338
339
340
341
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
342
343
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
344
        self.embedding_identifier = "embedding:"
345
        self.embedding_size = embedding_size
346
        self.embedding_key = embedding_key
347

348
    def _try_get_embedding(self, embedding_name:str):
349
350
351
352
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
353
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
354
355
356
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
357
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
358
359
360
361
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


362
    def tokenize_with_weights(self, text:str, return_word_ids=False):
363
364
365
366
367
368
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
369
370
371
372
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
373
374
375
376

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

377
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
378
        tokens = []
379
380
381
382
383
384
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
385
386
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
387
                    if embed is None:
388
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
389
                    else:
390
                        if len(embed.shape) == 1:
391
                            tokens.append([(embed, weight)])
392
                        else:
393
394
395
396
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
397
                    else:
398
399
400
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
401

402
403
        #reshape token array to CLIP input size
        batched_tokens = []
BlenderNeko's avatar
BlenderNeko committed
404
        batch = [(self.start_token, 1.0, 0)]
405
406
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
407
408
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
409

410
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
411
412
413
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
414
415
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
416
                        batch.append((self.end_token, 1.0, 0))
417
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
418
                    #add end token and pad
419
                    else:
BlenderNeko's avatar
BlenderNeko committed
420
421
422
423
                        batch.append((self.end_token, 1.0, 0))
                        batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = [(self.start_token, 1.0, 0)]
424
                    batched_tokens.append(batch)
425
                else:
426
427
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
428

429
        #fill last batch
BlenderNeko's avatar
BlenderNeko committed
430
        batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
comfyanonymous's avatar
comfyanonymous committed
431

432
433
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
434

435
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
436
437
438
439


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))