sd1_clip.py 16.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
9
from . import model_management
import contextlib
comfyanonymous's avatar
comfyanonymous committed
10
11
12

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
13
        to_encode = list(self.empty_tokens)
comfyanonymous's avatar
comfyanonymous committed
14
        for x in token_weight_pairs:
15
16
17
18
19
20
21
22
23
24
25
            tokens = list(map(lambda a: a[0], x))
            to_encode.append(tokens)

        out, pooled = self.encode(to_encode)
        z_empty = out[0:1]
        if pooled.shape[0] > 1:
            first_pooled = pooled[1:2]
        else:
            first_pooled = pooled[0:1]

        output = []
26
27
        for k in range(1, out.shape[0]):
            z = out[k:k+1]
comfyanonymous's avatar
comfyanonymous committed
28
29
            for i in range(len(z)):
                for j in range(len(z[i])):
30
                    weight = token_weight_pairs[k - 1][j][1]
comfyanonymous's avatar
comfyanonymous committed
31
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
32
33
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
34
        if (len(output) == 0):
35
            return z_empty.cpu(), first_pooled.cpu()
36
        return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
46
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
47
48
        super().__init__()
        assert layer in self.LAYERS
49
        self.num_layers = 12
comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
56
            self.num_layers = config.num_hidden_layers
57
            with comfy.ops.use_comfy_ops(device, dtype):
58
59
                with modeling_utils.no_init_weights():
                    self.transformer = CLIPTextModel(config)
comfyanonymous's avatar
comfyanonymous committed
60

61
62
        if dtype is not None:
            self.transformer.to(dtype)
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
69
70
        self.text_projection = None
        self.layer_norm_hidden_state = True
comfyanonymous's avatar
comfyanonymous committed
71
72
        if layer == "hidden":
            assert layer_idx is not None
73
            assert abs(layer_idx) <= self.num_layers
comfyanonymous's avatar
comfyanonymous committed
74
            self.clip_layer(layer_idx)
75
        self.layer_default = (self.layer, self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
84
        if abs(layer_idx) >= self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

90
91
92
93
    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

94
95
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
96
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
97
98
99
100
101
102
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
103
104
                    if y == token_dict_size: #EOS token
                        y = -1
105
106
                    tokens_temp += [y]
                else:
107
108
109
110
111
112
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
113
114
            while len(tokens_temp) < len(x):
                tokens_temp += [self.empty_tokens[0][-1]]
115
116
            out_tokens += [tokens_temp]

117
        n = token_dict_size
118
        if len(embedding_weights) > 0:
119
120
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
121
122
123
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
124
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
125
            self.transformer.set_input_embeddings(new_embedding)
126
127
128
129
130
131

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
132

comfyanonymous's avatar
comfyanonymous committed
133
    def forward(self, tokens):
134
        backup_embeds = self.transformer.get_input_embeddings()
135
        device = backup_embeds.weight.device
136
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
137
138
139
140
        tokens = torch.LongTensor(tokens).to(device)

        if backup_embeds.weight.dtype != torch.float32:
            precision_scope = torch.autocast
comfyanonymous's avatar
comfyanonymous committed
141
        else:
142
            precision_scope = lambda a, b: contextlib.nullcontext(a)
143

144
        with precision_scope(model_management.get_autocast_device(device), torch.float32):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
            self.transformer.set_input_embeddings(backup_embeds)

            if self.layer == "last":
                z = outputs.last_hidden_state
            elif self.layer == "pooled":
                z = outputs.pooler_output[:, None, :]
            else:
                z = outputs.hidden_states[self.layer_idx]
                if self.layer_norm_hidden_state:
                    z = self.transformer.text_model.final_layer_norm(z)

            pooled_output = outputs.pooler_output
            if self.text_projection is not None:
159
                pooled_output = pooled_output.to(self.text_projection.device) @ self.text_projection
160
        return z.float(), pooled_output.float()
comfyanonymous's avatar
comfyanonymous committed
161
162
163
164

    def encode(self, tokens):
        return self(tokens)

165
166
167
    def load_sd(self, sd):
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

245
246
247
248
249
250
251
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
252

253
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
254
255
256
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

257
258
    embedding_directory = expand_directory_list(embedding_directory)

259
260
261
262
263
264
265
266
267
268
    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.join(embed_dir, embedding_name)
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
269
        else:
270
271
272
273
274
275
276
277
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
278

279
280
    embed_out = None

281
282
283
284
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
285
        else:
286
            if 'weights_only' in torch.load.__code__.co_varnames:
287
288
289
290
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
291
292
293
294
295
296
297
298
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

299
300
301
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
302
303
304
305
306
307
308
309
310
311
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
312
313
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
314
315
        else:
            values = embed.values()
316
            embed_out = next(iter(values))
317
    return embed_out
318

comfyanonymous's avatar
comfyanonymous committed
319
class SD1Tokenizer:
320
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'):
comfyanonymous's avatar
comfyanonymous committed
321
322
323
324
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
325
326
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
327
328
329
330
331
332
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
333
334
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
335
        self.embedding_identifier = "embedding:"
336
        self.embedding_size = embedding_size
337
        self.embedding_key = embedding_key
338

339
    def _try_get_embedding(self, embedding_name:str):
340
341
342
343
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
344
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
345
346
347
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
348
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
349
350
351
352
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


353
    def tokenize_with_weights(self, text:str, return_word_ids=False):
354
355
356
357
358
359
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
360
361
362
363
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
364
365
366
367

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

368
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
369
        tokens = []
370
371
372
373
374
375
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
376
377
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
378
                    if embed is None:
379
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
380
                    else:
381
                        if len(embed.shape) == 1:
382
                            tokens.append([(embed, weight)])
383
                        else:
384
385
386
387
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
388
                    else:
389
390
391
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
392

393
394
        #reshape token array to CLIP input size
        batched_tokens = []
BlenderNeko's avatar
BlenderNeko committed
395
        batch = [(self.start_token, 1.0, 0)]
396
397
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
398
399
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
400

401
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
402
403
404
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
405
406
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
407
                        batch.append((self.end_token, 1.0, 0))
408
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
409
                    #add end token and pad
410
                    else:
BlenderNeko's avatar
BlenderNeko committed
411
412
413
414
                        batch.append((self.end_token, 1.0, 0))
                        batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = [(self.start_token, 1.0, 0)]
415
                    batched_tokens.append(batch)
416
                else:
417
418
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
419

420
        #fill last batch
BlenderNeko's avatar
BlenderNeko committed
421
        batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
comfyanonymous's avatar
comfyanonymous committed
422

423
424
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
425

426
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
427
428
429
430


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))