sd1_clip.py 13.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import os

from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig
import torch
5
import traceback
6
import zipfile
comfyanonymous's avatar
comfyanonymous committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
        z_empty = self.encode(self.empty_tokens)
        output = []
        for x in token_weight_pairs:
            tokens = [list(map(lambda a: a[0], x))]
            z = self.encode(tokens)
            for i in range(len(z)):
                for j in range(len(z[i])):
                    weight = x[j][1]
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
            output += [z]
        if (len(output) == 0):
            return self.encode(self.empty_tokens)
        return torch.cat(output, dim=-2)

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
            self.transformer = CLIPTextModel(config)

        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) <= 12
            self.clip_layer(layer_idx)

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
        if abs(layer_idx) >= 12:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

68
69
70
71
72
73
74
75
76
77
78
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
        next_new_token = token_dict_size = current_embeds.weight.shape[0]
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
                    tokens_temp += [y]
                else:
79
80
81
82
83
84
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
85
86
87
88
89
90
91
92
93
94
95
96
            out_tokens += [tokens_temp]

        if len(embedding_weights) > 0:
            new_embedding = torch.nn.Embedding(next_new_token, current_embeds.weight.shape[1])
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:]
            n = token_dict_size
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            self.transformer.set_input_embeddings(new_embedding)
        return out_tokens

comfyanonymous's avatar
comfyanonymous committed
97
    def forward(self, tokens):
98
99
        backup_embeds = self.transformer.get_input_embeddings()
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
100
101
        tokens = torch.LongTensor(tokens).to(self.device)
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
102
        self.transformer.set_input_embeddings(backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        if self.layer == "last":
            z = outputs.last_hidden_state
        elif self.layer == "pooled":
            z = outputs.pooler_output[:, None, :]
        else:
            z = outputs.hidden_states[self.layer_idx]
            z = self.transformer.text_model.final_layer_norm(z)

        return z

    def encode(self, tokens):
        return self(tokens)

def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out


195
def load_embed(embedding_name, embedding_directory):
196
197
198
199
200
201
202
203
204
205
206
207
208
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.join(embed_dir, embedding_name)
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
209
        else:
210
211
212
213
214
215
216
217
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
218

219
220
    embed_out = None

221
222
223
224
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
225
        else:
226
            if 'weights_only' in torch.load.__code__.co_varnames:
227
228
229
230
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
231
232
233
234
235
236
237
238
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

239
240
241
242
243
244
245
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
        else:
            values = embed.values()
        embed_out = next(iter(values))
    return embed_out
246

comfyanonymous's avatar
comfyanonymous committed
247
class SD1Tokenizer:
248
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
249
250
251
252
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
253
254
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
261
262
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
263
264
        self.embedding_identifier = "embedding:"

265
    def _try_get_embedding(self, embedding_name:str):
266
267
268
269
270
271
272
273
274
275
276
277
278
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
        embed = load_embed(embedding_name, self.embedding_directory)
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
                embed = load_embed(stripped, self.embedding_directory)
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


279
    def tokenize_with_weights(self, text:str, return_word_ids=False):
280
281
282
283
284
285
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
286
287
288
289
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
290
291
292
293

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

294
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
295
        tokens = []
296
297
298
299
300
301
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
302
303
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
304
                    if embed is None:
305
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
306
                    else:
307
                        if len(embed.shape) == 1:
308
                            tokens.append([(embed, weight)])
309
                        else:
310
311
312
313
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
314
                    else:
315
316
317
318
319
320
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
        
        #reshape token array to CLIP input size
        batched_tokens = []
BlenderNeko's avatar
BlenderNeko committed
321
        batch = [(self.start_token, 1.0, 0)]
322
323
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
324
325
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
326

327
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
328
329
330
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
331
332
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
333
                        batch.append((self.end_token, 1.0, 0))
334
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
335
                    #add end token and pad
336
                    else:
BlenderNeko's avatar
BlenderNeko committed
337
338
339
340
                        batch.append((self.end_token, 1.0, 0))
                        batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = [(self.start_token, 1.0, 0)]
341
                    batched_tokens.append(batch)    
342
                else:
343
344
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
345
346
        
        #fill last batch
BlenderNeko's avatar
BlenderNeko committed
347
        batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
comfyanonymous's avatar
comfyanonymous committed
348

349
350
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
351

352
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
353
354
355
356


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))