sd1_clip.py 13.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import os

from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig
import torch
5
import traceback
6
import zipfile
comfyanonymous's avatar
comfyanonymous committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
        z_empty = self.encode(self.empty_tokens)
        output = []
        for x in token_weight_pairs:
            tokens = [list(map(lambda a: a[0], x))]
            z = self.encode(tokens)
            for i in range(len(z)):
                for j in range(len(z[i])):
                    weight = x[j][1]
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
            output += [z]
        if (len(output) == 0):
            return self.encode(self.empty_tokens)
        return torch.cat(output, dim=-2)

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
            self.transformer = CLIPTextModel(config)

        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) <= 12
            self.clip_layer(layer_idx)

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
        if abs(layer_idx) >= 12:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

68
69
70
71
72
73
74
75
76
77
78
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
        next_new_token = token_dict_size = current_embeds.weight.shape[0]
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
                    tokens_temp += [y]
                else:
79
80
81
82
83
84
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
85
86
87
88
89
90
91
92
93
94
95
96
            out_tokens += [tokens_temp]

        if len(embedding_weights) > 0:
            new_embedding = torch.nn.Embedding(next_new_token, current_embeds.weight.shape[1])
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:]
            n = token_dict_size
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            self.transformer.set_input_embeddings(new_embedding)
        return out_tokens

comfyanonymous's avatar
comfyanonymous committed
97
    def forward(self, tokens):
98
99
        backup_embeds = self.transformer.get_input_embeddings()
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
100
101
        tokens = torch.LongTensor(tokens).to(self.device)
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
102
        self.transformer.set_input_embeddings(backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        if self.layer == "last":
            z = outputs.last_hidden_state
        elif self.layer == "pooled":
            z = outputs.pooler_output[:, None, :]
        else:
            z = outputs.hidden_states[self.layer_idx]
            z = self.transformer.text_model.final_layer_norm(z)

        return z

    def encode(self, tokens):
        return self(tokens)

def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

194
195
196
197
198
199
200
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
201

202
def load_embed(embedding_name, embedding_directory):
203
204
205
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

206
207
    embedding_directory = expand_directory_list(embedding_directory)

208
209
210
211
212
213
214
215
216
217
    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.join(embed_dir, embedding_name)
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
218
        else:
219
220
221
222
223
224
225
226
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
227

228
229
    embed_out = None

230
231
232
233
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
234
        else:
235
            if 'weights_only' in torch.load.__code__.co_varnames:
236
237
238
239
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
240
241
242
243
244
245
246
247
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

248
249
250
251
252
253
254
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
        else:
            values = embed.values()
        embed_out = next(iter(values))
    return embed_out
255

comfyanonymous's avatar
comfyanonymous committed
256
class SD1Tokenizer:
257
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
262
263
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
264
265
266
267
268
269
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
270
271
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
272
273
        self.embedding_identifier = "embedding:"

274
    def _try_get_embedding(self, embedding_name:str):
275
276
277
278
279
280
281
282
283
284
285
286
287
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
        embed = load_embed(embedding_name, self.embedding_directory)
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
                embed = load_embed(stripped, self.embedding_directory)
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


288
    def tokenize_with_weights(self, text:str, return_word_ids=False):
289
290
291
292
293
294
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
295
296
297
298
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
299
300
301
302

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

303
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
304
        tokens = []
305
306
307
308
309
310
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
311
312
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
313
                    if embed is None:
314
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
315
                    else:
316
                        if len(embed.shape) == 1:
317
                            tokens.append([(embed, weight)])
318
                        else:
319
320
321
322
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
323
                    else:
324
325
326
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
327

328
329
        #reshape token array to CLIP input size
        batched_tokens = []
BlenderNeko's avatar
BlenderNeko committed
330
        batch = [(self.start_token, 1.0, 0)]
331
332
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
333
334
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
335

336
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
337
338
339
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
340
341
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
342
                        batch.append((self.end_token, 1.0, 0))
343
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
344
                    #add end token and pad
345
                    else:
BlenderNeko's avatar
BlenderNeko committed
346
347
348
349
                        batch.append((self.end_token, 1.0, 0))
                        batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = [(self.start_token, 1.0, 0)]
350
                    batched_tokens.append(batch)
351
                else:
352
353
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
354

355
        #fill last batch
BlenderNeko's avatar
BlenderNeko committed
356
        batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
comfyanonymous's avatar
comfyanonymous committed
357

358
359
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
360

361
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
362
363
364
365


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))