model_management.py 20.7 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
4
import torch
comfyanonymous's avatar
comfyanonymous committed
5
import sys
6

7
class VRAMState(Enum):
8
9
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
10
11
12
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
13
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
14
15
16
17
18

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
19

20
21
22
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
23
cpu_state = CPUState.GPU
24

25
total_vram = 0
26

27
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
28
xpu_available = False
29

30
directml_enabled = False
31
if args.directml is not None:
32
33
    import torch_directml
    directml_enabled = True
34
35
36
37
38
39
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
40
    # torch_directml.disable_tiled_resources(True)
41
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
42

43
try:
44
45
46
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
47
48
49
except:
    pass

50
51
52
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
53
        import torch.mps
54
55
56
57
58
59
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

60
61
62
def get_torch_device():
    global xpu_available
    global directml_enabled
63
    global cpu_state
64
65
66
    if directml_enabled:
        global directml_device
        return directml_device
67
    if cpu_state == CPUState.MPS:
68
        return torch.device("mps")
69
    if cpu_state == CPUState.CPU:
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        return torch.device("cpu")
    else:
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global xpu_available
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif xpu_available:
91
92
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
93
            mem_total = torch.xpu.get_device_properties(dev).total_memory
94
            mem_total_torch = mem_reserved
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM
    elif total_vram > total_ram * 1.1 and total_vram > 14336:
        print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
        vram_state = VRAMState.HIGH_VRAM

118
119
120
121
122
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

123
124
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
125
126
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
127
128
129
130
else:
    try:
        import xformers
        import xformers.ops
131
        XFORMERS_IS_AVAILABLE = True
132
133
134
135
136
137
138
139
140
141
142
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
143
    except:
144
        XFORMERS_IS_AVAILABLE = False
145

146
147
148
149
150
151
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True

152
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
153
154
155
156
157
158
159
160
161
162

if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
    try:
        if is_nvidia():
            torch_version = torch.version.__version__
            if int(torch_version[0]) >= 2:
                ENABLE_PYTORCH_ATTENTION = True
    except:
        pass

163
if ENABLE_PYTORCH_ATTENTION:
164
165
166
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
167
    XFORMERS_IS_AVAILABLE = False
168

169
170
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
171
    lowvram_available = True
172
173
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
174
elif args.highvram or args.gpu_only:
175
    vram_state = VRAMState.HIGH_VRAM
176

177
FORCE_FP32 = False
178
FORCE_FP16 = False
179
180
181
182
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

183
184
185
186
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

187
if lowvram_available:
188
189
    try:
        import accelerate
190
191
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
192
193
194
    except Exception as e:
        import traceback
        print(traceback.format_exc())
195
196
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
197

198

199
200
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
201

202
203
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
204

205
print(f"Set vram state to: {vram_state.name}")
206

207
208
209
210
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
211

212
def get_torch_device_name(device):
213
    global xpu_available
214
    if hasattr(device, 'type'):
215
        if device.type == "cuda":
216
217
218
219
220
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
221
222
        else:
            return "{}".format(device.type)
223
224
    elif xpu_available:
        return "{} {}".format(device, torch.xpu.get_device_name(device))
225
226
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
227
228

try:
229
    print("Device:", get_torch_device_name(get_torch_device()))
230
231
232
except:
    print("Could not pick default device.")

233

comfyanonymous's avatar
comfyanonymous committed
234
current_loaded_models = []
235

comfyanonymous's avatar
comfyanonymous committed
236
237
238
239
240
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
241

comfyanonymous's avatar
comfyanonymous committed
242
243
    def model_memory(self):
        return self.model.model_size()
244

comfyanonymous's avatar
comfyanonymous committed
245
246
247
248
249
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
250

comfyanonymous's avatar
comfyanonymous committed
251
    def model_load(self, lowvram_model_memory=0):
252
        global xpu_available
comfyanonymous's avatar
comfyanonymous committed
253
254
255
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
256

comfyanonymous's avatar
comfyanonymous committed
257
258
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
259

comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
264
265
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
266

comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
272

273
        if xpu_available and not args.disable_ipex_optimize:
274
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
275

comfyanonymous's avatar
comfyanonymous committed
276
        return self.real_model
277

comfyanonymous's avatar
comfyanonymous committed
278
279
280
281
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
282

comfyanonymous's avatar
comfyanonymous committed
283
284
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
285

comfyanonymous's avatar
comfyanonymous committed
286
287
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
288

comfyanonymous's avatar
comfyanonymous committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
305
306
307
308
        if DISABLE_SMART_MEMORY:
            current_free_mem = 0
        else:
            current_free_mem = get_free_memory(device)
comfyanonymous's avatar
comfyanonymous committed
309
310
311
312
313
314
315
316
317
318
319
320
321
        if current_free_mem > memory_required:
            break
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                current_loaded_models.pop(i).model_unload()
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
322
323
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
344
345
        return

comfyanonymous's avatar
comfyanonymous committed
346
    print("loading new")
347

comfyanonymous's avatar
comfyanonymous committed
348
349
350
351
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
352

comfyanonymous's avatar
comfyanonymous committed
353
354
355
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
356

comfyanonymous's avatar
comfyanonymous committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
373

comfyanonymous's avatar
comfyanonymous committed
374
375
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
376

comfyanonymous's avatar
comfyanonymous committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
396

397
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
398
    if vram_state == VRAMState.HIGH_VRAM:
399
400
401
402
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
403
404
405
406
407
408
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
409
410
411
    if DISABLE_SMART_MEMORY:
        return cpu_dev

412
413
414
415
416
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2

    model_size = dtype_size * parameters
comfyanonymous's avatar
comfyanonymous committed
417
418
419
420
421
422
423
424

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

425
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
426
    if args.gpu_only:
427
428
429
430
        return get_torch_device()
    else:
        return torch.device("cpu")

431
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
432
    if args.gpu_only:
433
        return get_torch_device()
434
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
435
        if should_use_fp16(prioritize_performance=False):
436
437
438
            return get_torch_device()
        else:
            return torch.device("cpu")
439
440
441
    else:
        return torch.device("cpu")

442
443
444
445
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
446
    if args.gpu_only:
447
448
449
450
        return get_torch_device()
    else:
        return torch.device("cpu")

451
452
453
454
455
456
457
458
def vae_dtype():
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    else:
        return torch.float32

459
460
461
462
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
463

464

465
def xformers_enabled():
466
467
    global xpu_available
    global directml_enabled
468
469
    global cpu_state
    if cpu_state != CPUState.GPU:
470
        return False
471
472
473
474
    if xpu_available:
        return False
    if directml_enabled:
        return False
475
    return XFORMERS_IS_AVAILABLE
476

477
478
479
480
481

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
482
483

    return XFORMERS_ENABLED_VAE
484

485
def pytorch_attention_enabled():
486
    global ENABLE_PYTORCH_ATTENTION
487
488
    return ENABLE_PYTORCH_ATTENTION

489
490
491
492
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
493
        if is_nvidia(): #pytorch flash attention only works on Nvidia
494
495
496
            return True
    return False

497
def get_free_memory(dev=None, torch_free_too=False):
498
    global xpu_available
499
    global directml_enabled
500
    if dev is None:
501
        dev = get_torch_device()
502

Yurii Mazurevich's avatar
Yurii Mazurevich committed
503
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
504
505
506
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
507
508
509
510
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif xpu_available:
511
512
513
514
515
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
516
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
517
518
519
520
521
522
523
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
524
525
526
527
528

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
529

comfyanonymous's avatar
comfyanonymous committed
530
531
532
533
534
535
536
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

537
538
def maximum_batch_area():
    global vram_state
539
    if vram_state == VRAMState.NO_VRAM:
540
541
542
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
543
    if xformers_enabled() or pytorch_attention_flash_attention():
544
        #TODO: this needs to be tweaked
545
        area = 20 * memory_free
546
547
548
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
549
    return int(max(area, 0))
550
551

def cpu_mode():
552
553
    global cpu_state
    return cpu_state == CPUState.CPU
554

Yurii Mazurevich's avatar
Yurii Mazurevich committed
555
def mps_mode():
556
557
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
558

559
560
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
567
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
568
569
570
            return True
    return False

571
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
572
    global xpu_available
573
574
    global directml_enabled

575
576
577
578
    if device is not None:
        if is_device_cpu(device):
            return False

579
580
581
    if FORCE_FP16:
        return True

582
    if device is not None: #TODO
583
        if is_device_mps(device):
584
            return False
585

586
587
588
    if FORCE_FP32:
        return False

589
590
591
    if directml_enabled:
        return False

592
    if cpu_mode() or mps_mode():
593
594
        return False #TODO ?

comfyanonymous's avatar
comfyanonymous committed
595
596
597
598
    if xpu_available:
        return True

    if torch.cuda.is_bf16_supported():
599
600
        return True

comfyanonymous's avatar
comfyanonymous committed
601
    props = torch.cuda.get_device_properties("cuda")
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
616
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
617
618
            return True

619
620
621
    if props.major < 7:
        return False

622
    #FP16 is just broken on these cards
623
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
624
625
626
627
628
629
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

630
631
def soft_empty_cache():
    global xpu_available
632
633
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
634
635
        torch.mps.empty_cache()
    elif xpu_available:
636
637
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
638
        if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
639
640
641
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()