model_management.py 19.7 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
4
import torch
comfyanonymous's avatar
comfyanonymous committed
5
import sys
6

7
class VRAMState(Enum):
8
9
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
10
11
12
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
13
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
14
15
16
17
18

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
19

20
21
22
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
23
cpu_state = CPUState.GPU
24

25
total_vram = 0
26

27
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
28
xpu_available = False
29

30
directml_enabled = False
31
if args.directml is not None:
32
33
    import torch_directml
    directml_enabled = True
34
35
36
37
38
39
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
40
    # torch_directml.disable_tiled_resources(True)
41
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
42

43
try:
44
45
46
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
47
48
49
except:
    pass

50
51
52
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
53
        import torch.mps
54
55
56
57
58
59
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

60
61
62
def get_torch_device():
    global xpu_available
    global directml_enabled
63
    global cpu_state
64
65
66
    if directml_enabled:
        global directml_device
        return directml_device
67
    if cpu_state == CPUState.MPS:
68
        return torch.device("mps")
69
    if cpu_state == CPUState.CPU:
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        return torch.device("cpu")
    else:
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global xpu_available
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif xpu_available:
            mem_total = torch.xpu.get_device_properties(dev).total_memory
            mem_total_torch = mem_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM
    elif total_vram > total_ram * 1.1 and total_vram > 14336:
        print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
        vram_state = VRAMState.HIGH_VRAM

116
117
118
119
120
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

121
122
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
123
124
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
125
126
127
128
else:
    try:
        import xformers
        import xformers.ops
129
        XFORMERS_IS_AVAILABLE = True
130
131
132
133
134
135
136
137
138
139
140
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
141
    except:
142
        XFORMERS_IS_AVAILABLE = False
143

144
145
146
147
148
149
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True

150
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
151
152
153
154
155
156
157
158
159
160

if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
    try:
        if is_nvidia():
            torch_version = torch.version.__version__
            if int(torch_version[0]) >= 2:
                ENABLE_PYTORCH_ATTENTION = True
    except:
        pass

161
if ENABLE_PYTORCH_ATTENTION:
162
163
164
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
165
    XFORMERS_IS_AVAILABLE = False
166

167
168
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
169
    lowvram_available = True
170
171
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
172
elif args.highvram or args.gpu_only:
173
    vram_state = VRAMState.HIGH_VRAM
174

175
FORCE_FP32 = False
176
FORCE_FP16 = False
177
178
179
180
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

181
182
183
184
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

185
if lowvram_available:
186
187
    try:
        import accelerate
188
189
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
190
191
192
    except Exception as e:
        import traceback
        print(traceback.format_exc())
193
194
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
195

196

197
198
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
199

200
201
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
202

203
print(f"Set vram state to: {vram_state.name}")
204

205

206
207
def get_torch_device_name(device):
    if hasattr(device, 'type'):
208
        if device.type == "cuda":
209
210
211
212
213
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
214
215
216
217
        else:
            return "{}".format(device.type)
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
218
219

try:
220
    print("Device:", get_torch_device_name(get_torch_device()))
221
222
223
except:
    print("Could not pick default device.")

224

comfyanonymous's avatar
comfyanonymous committed
225
current_loaded_models = []
226

comfyanonymous's avatar
comfyanonymous committed
227
228
229
230
231
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
232

comfyanonymous's avatar
comfyanonymous committed
233
234
    def model_memory(self):
        return self.model.model_size()
235

comfyanonymous's avatar
comfyanonymous committed
236
237
238
239
240
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
241

comfyanonymous's avatar
comfyanonymous committed
242
243
244
245
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
246

comfyanonymous's avatar
comfyanonymous committed
247
248
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
249

comfyanonymous's avatar
comfyanonymous committed
250
251
252
253
254
255
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
256

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
262

comfyanonymous's avatar
comfyanonymous committed
263
        return self.real_model
264

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
269

comfyanonymous's avatar
comfyanonymous committed
270
271
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
272

comfyanonymous's avatar
comfyanonymous committed
273
274
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
275

comfyanonymous's avatar
comfyanonymous committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
        current_free_mem = get_free_memory(device)
        if current_free_mem > memory_required:
            break
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                current_loaded_models.pop(i).model_unload()
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
306
307
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
328
329
        return

comfyanonymous's avatar
comfyanonymous committed
330
    print("loading new")
331

comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
336

comfyanonymous's avatar
comfyanonymous committed
337
338
339
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
340

comfyanonymous's avatar
comfyanonymous committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
357

comfyanonymous's avatar
comfyanonymous committed
358
359
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
360

comfyanonymous's avatar
comfyanonymous committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
380

381
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
382
    if vram_state == VRAMState.HIGH_VRAM:
383
384
385
386
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
    model_size = dtype.itemsize * parameters

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

402
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
403
    if args.gpu_only:
404
405
406
407
        return get_torch_device()
    else:
        return torch.device("cpu")

408
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
409
    if args.gpu_only:
410
        return get_torch_device()
411
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
412
413
        #NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
        if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
414
415
416
            return get_torch_device()
        else:
            return torch.device("cpu")
417
418
419
    else:
        return torch.device("cpu")

420
421
422
423
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
424
    if args.gpu_only:
425
426
427
428
        return get_torch_device()
    else:
        return torch.device("cpu")

429
430
431
432
433
434
435
436
def vae_dtype():
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    else:
        return torch.float32

437
438
439
440
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
441

442

443
def xformers_enabled():
444
445
    global xpu_available
    global directml_enabled
446
447
    global cpu_state
    if cpu_state != CPUState.GPU:
448
        return False
449
450
451
452
    if xpu_available:
        return False
    if directml_enabled:
        return False
453
    return XFORMERS_IS_AVAILABLE
454

455
456
457
458
459

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
460
461

    return XFORMERS_ENABLED_VAE
462

463
def pytorch_attention_enabled():
464
    global ENABLE_PYTORCH_ATTENTION
465
466
    return ENABLE_PYTORCH_ATTENTION

467
468
469
470
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
471
        if is_nvidia(): #pytorch flash attention only works on Nvidia
472
473
474
            return True
    return False

475
def get_free_memory(dev=None, torch_free_too=False):
476
    global xpu_available
477
    global directml_enabled
478
    if dev is None:
479
        dev = get_torch_device()
480

Yurii Mazurevich's avatar
Yurii Mazurevich committed
481
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
482
483
484
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
485
486
487
488
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif xpu_available:
489
490
491
492
493
494
495
496
497
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
            mem_free_torch = mem_free_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
498
499
500
501
502

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
503

comfyanonymous's avatar
comfyanonymous committed
504
505
506
507
508
509
510
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

511
512
def maximum_batch_area():
    global vram_state
513
    if vram_state == VRAMState.NO_VRAM:
514
515
516
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
517
    if xformers_enabled() or pytorch_attention_flash_attention():
518
        #TODO: this needs to be tweaked
519
        area = 20 * memory_free
520
521
522
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
523
    return int(max(area, 0))
524
525

def cpu_mode():
526
527
    global cpu_state
    return cpu_state == CPUState.CPU
528

Yurii Mazurevich's avatar
Yurii Mazurevich committed
529
def mps_mode():
530
531
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
532

533
534
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
535
536
537
538
539
540
541
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
542
543
544
            return True
    return False

545
def should_use_fp16(device=None, model_params=0):
546
    global xpu_available
547
548
    global directml_enabled

549
550
551
    if FORCE_FP16:
        return True

552
    if device is not None: #TODO
comfyanonymous's avatar
comfyanonymous committed
553
        if is_device_cpu(device) or is_device_mps(device):
554
            return False
555

556
557
558
    if FORCE_FP32:
        return False

559
560
561
    if directml_enabled:
        return False

562
    if cpu_mode() or mps_mode() or xpu_available:
563
564
565
566
567
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
568
    props = torch.cuda.get_device_properties("cuda")
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if model_params * 4 > free_model_memory:
            return True

586
587
588
    if props.major < 7:
        return False

589
    #FP16 is just broken on these cards
590
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
591
592
593
594
595
596
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

597
598
def soft_empty_cache():
    global xpu_available
599
600
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
601
602
        torch.mps.empty_cache()
    elif xpu_available:
603
604
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
605
        if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
606
607
608
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()