nodes_custom_sampler.py 24.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
6
import comfy.utils
7
import node_helpers
comfyanonymous's avatar
comfyanonymous committed
8

9
10
11
12
13
14
15
16

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
17
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
18
19
20
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
21
    CATEGORY = "sampling/custom_sampling/schedulers"
22
23
24

    FUNCTION = "get_sigmas"

25
26
27
    def get_sigmas(self, model, scheduler, steps, denoise):
        total_steps = steps
        if denoise < 1.0:
comfyanonymous's avatar
comfyanonymous committed
28
29
            if denoise <= 0.0:
                return (torch.FloatTensor([]),)
30
31
            total_steps = int(steps/denoise)

32
        sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu()
33
        sigmas = sigmas[-(steps + 1):]
34
35
36
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
42
43
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
comfyanonymous's avatar
comfyanonymous committed
44
45
46
47
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
48
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
49
50
51
52
53
54
55

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

56
57
58
59
60
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
61
62
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
63
64
65
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
66
    CATEGORY = "sampling/custom_sampling/schedulers"
67
68
69
70
71
72
73
74
75
76
77
78

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
79
80
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
81
82
83
84
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
85
    CATEGORY = "sampling/custom_sampling/schedulers"
86
87
88
89
90
91
92

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
class SDTurboScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
99
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
105
106
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/schedulers"

    FUNCTION = "get_sigmas"

107
108
109
    def get_sigmas(self, model, steps, denoise):
        start_step = 10 - int(10 * denoise)
        timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
110
        sigmas = model.get_model_object("model_sampling").sigma(timesteps)
comfyanonymous's avatar
comfyanonymous committed
111
112
113
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
114
115
116
117
118
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
119
120
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
comfyanonymous's avatar
comfyanonymous committed
121
122
123
124
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
125
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
126
127
128
129
130
131
132

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
139
140
141
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
142
    RETURN_NAMES = ("high_sigmas", "low_sigmas")
143
    CATEGORY = "sampling/custom_sampling/sigmas"
comfyanonymous's avatar
comfyanonymous committed
144
145
146
147
148

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
149
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
150
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class SplitSigmasDenoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
    RETURN_NAMES = ("high_sigmas", "low_sigmas")
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, denoise):
        steps = max(sigmas.shape[-1] - 1, 0)
        total_steps = round(steps * denoise)
        sigmas1 = sigmas[:-(total_steps)]
        sigmas2 = sigmas[-(total_steps + 1):]
        return (sigmas1, sigmas2)

173
174
175
176
177
178
179
180
181
182
183
184
185
class FlipSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas):
comfyanonymous's avatar
comfyanonymous committed
186
187
188
        if len(sigmas) == 0:
            return (sigmas,)

189
190
191
192
193
        sigmas = sigmas.flip(0)
        if sigmas[0] == 0:
            sigmas[0] = 0.0001
        return (sigmas,)

comfyanonymous's avatar
comfyanonymous committed
194
195
196
197
class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
198
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
199
200
201
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
202
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
203
204
205
206

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
207
        sampler = comfy.samplers.sampler_object(sampler_name)
comfyanonymous's avatar
comfyanonymous committed
208
209
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
class SamplerDPMPP_3M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_3m_sde"
        else:
            sampler_name = "dpmpp_3m_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
232
233
234
235
236
237
238
239
240
241
242
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
243
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
244
245
246
247
248
249
250
251

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
252
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
comfyanonymous's avatar
comfyanonymous committed
253
254
255
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
262
263
264
265
266
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
267
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
268
269
270
271
272
273
274
275

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
276
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
comfyanonymous's avatar
comfyanonymous committed
277
278
        return (sampler, )

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class SamplerEulerAncestral:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise):
        sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
        return (sampler, )

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
class SamplerEulerAncestralCFGPP:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": False}),
                "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}),
            }}
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise):
        sampler = comfy.samplers.ksampler(
            "euler_ancestral_cfg_pp",
            {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
class SamplerLMS:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 4, "min": 1, "max": 100}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order):
        sampler = comfy.samplers.ksampler("lms", {"order": order})
        return (sampler, )

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
class SamplerDPMAdaptative:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 3, "min": 2, "max": 3}),
                     "rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise):
        sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff,
                                                              "icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta,
                                                              "s_noise":s_noise })
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
358
359
360
361
362
363
class Noise_EmptyNoise:
    def __init__(self):
        self.seed = 0

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
comfyanonymous's avatar
comfyanonymous committed
364
        return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
369
370
371
372
373
374
375


class Noise_RandomNoise:
    def __init__(self, seed):
        self.seed = seed

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
        batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
        return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds)

comfyanonymous's avatar
comfyanonymous committed
376
377
378
379
380
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
381
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
382
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
383
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
384
385
386
387
388
389
390
391
392
393
394
395
396
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

397
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
398
399
400
401

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
402
        latent = latent.copy()
403
        latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
404
405
        latent["samples"] = latent_image

406
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
407
            noise = Noise_EmptyNoise().generate_noise(latent)
comfyanonymous's avatar
comfyanonymous committed
408
        else:
comfyanonymous's avatar
comfyanonymous committed
409
            noise = Noise_RandomNoise(noise_seed).generate_noise(latent)
comfyanonymous's avatar
comfyanonymous committed
410
411
412
413
414
415
416
417

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

418
        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
comfyanonymous's avatar
comfyanonymous committed
419
420
421
422
423
424
425
426
427
428
429
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
class Guider_Basic(comfy.samplers.CFGGuider):
    def set_conds(self, positive):
        self.inner_set_conds({"positive": positive})

class BasicGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "conditioning": ("CONDITIONING", ),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, conditioning):
        guider = Guider_Basic(model)
        guider.set_conds(conditioning)
        return (guider,)
comfyanonymous's avatar
comfyanonymous committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

class CFGGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, positive, negative, cfg):
        guider = comfy.samplers.CFGGuider(model)
comfyanonymous's avatar
comfyanonymous committed
471
        guider.set_conds(positive, negative)
comfyanonymous's avatar
comfyanonymous committed
472
473
474
        guider.set_cfg(cfg)
        return (guider,)

475
476
477
478
479
480
class Guider_DualCFG(comfy.samplers.CFGGuider):
    def set_cfg(self, cfg1, cfg2):
        self.cfg1 = cfg1
        self.cfg2 = cfg2

    def set_conds(self, positive, middle, negative):
481
        middle = node_helpers.conditioning_set_values(middle, {"prompt_type": "negative"})
482
483
484
        self.inner_set_conds({"positive": positive, "middle": middle, "negative": negative})

    def predict_noise(self, x, timestep, model_options={}, seed=None):
485
486
487
488
489
        negative_cond = self.conds.get("negative", None)
        middle_cond = self.conds.get("middle", None)

        out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, self.conds.get("positive", None)], x, timestep, model_options)
        return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options, cond=middle_cond, uncond=negative_cond) + (out[2] - out[1]) * self.cfg1
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

class DualCFGGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "cond1": ("CONDITIONING", ),
                    "cond2": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "cfg_conds": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                    "cfg_cond2_negative": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative):
        guider = Guider_DualCFG(model)
        guider.set_conds(cond1, cond2, negative)
        guider.set_cfg(cfg_conds, cfg_cond2_negative)
        return (guider,)
comfyanonymous's avatar
comfyanonymous committed
514
515
516
517
518
519
520
521
522
523
524
525

class DisableNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                     }
                }

    RETURN_TYPES = ("NOISE",)
    FUNCTION = "get_noise"
    CATEGORY = "sampling/custom_sampling/noise"

comfyanonymous's avatar
comfyanonymous committed
526
    def get_noise(self):
comfyanonymous's avatar
comfyanonymous committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        return (Noise_EmptyNoise(),)


class RandomNoise(DisableNoise):
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     }
                }

    def get_noise(self, noise_seed):
        return (Noise_RandomNoise(noise_seed),)


class SamplerCustomAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"noise": ("NOISE", ),
                    "guider": ("GUIDER", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

    CATEGORY = "sampling/custom_sampling"

    def sample(self, noise, guider, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
564
        latent = latent.copy()
565
        latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image)
566
        latent["samples"] = latent_image
comfyanonymous's avatar
comfyanonymous committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output)

        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
        samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
        samples = samples.to(comfy.model_management.intermediate_device())

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
class AddNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "noise": ("NOISE", ),
                     "sigmas": ("SIGMAS", ),
                     "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT",)

    FUNCTION = "add_noise"

    CATEGORY = "_for_testing/custom_sampling/noise"

    def add_noise(self, model, noise, sigmas, latent_image):
        if len(sigmas) == 0:
            return latent_image

        latent = latent_image
        latent_image = latent["samples"]

        noisy = noise.generate_noise(latent)

        model_sampling = model.get_model_object("model_sampling")
        process_latent_out = model.get_model_object("process_latent_out")
        process_latent_in = model.get_model_object("process_latent_in")

        if len(sigmas) > 1:
            scale = torch.abs(sigmas[0] - sigmas[-1])
        else:
            scale = sigmas[0]

        if torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
            latent_image = process_latent_in(latent_image)
        noisy = model_sampling.noise_scaling(scale, noisy, latent_image)
        noisy = process_latent_out(noisy)
        noisy = torch.nan_to_num(noisy, nan=0.0, posinf=0.0, neginf=0.0)

        out = latent.copy()
        out["samples"] = noisy
        return (out,)


comfyanonymous's avatar
comfyanonymous committed
634
635
NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
636
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
637
    "KarrasScheduler": KarrasScheduler,
638
639
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
640
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
641
    "SDTurboScheduler": SDTurboScheduler,
comfyanonymous's avatar
comfyanonymous committed
642
    "KSamplerSelect": KSamplerSelect,
643
    "SamplerEulerAncestral": SamplerEulerAncestral,
644
    "SamplerEulerAncestralCFGPP": SamplerEulerAncestralCFGPP,
comfyanonymous's avatar
comfyanonymous committed
645
    "SamplerLMS": SamplerLMS,
comfyanonymous's avatar
comfyanonymous committed
646
    "SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE,
comfyanonymous's avatar
comfyanonymous committed
647
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
648
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
649
    "SamplerDPMAdaptative": SamplerDPMAdaptative,
comfyanonymous's avatar
comfyanonymous committed
650
    "SplitSigmas": SplitSigmas,
651
    "SplitSigmasDenoise": SplitSigmasDenoise,
652
    "FlipSigmas": FlipSigmas,
comfyanonymous's avatar
comfyanonymous committed
653
654

    "CFGGuider": CFGGuider,
655
    "DualCFGGuider": DualCFGGuider,
656
    "BasicGuider": BasicGuider,
comfyanonymous's avatar
comfyanonymous committed
657
658
    "RandomNoise": RandomNoise,
    "DisableNoise": DisableNoise,
659
    "AddNoise": AddNoise,
comfyanonymous's avatar
comfyanonymous committed
660
    "SamplerCustomAdvanced": SamplerCustomAdvanced,
comfyanonymous's avatar
comfyanonymous committed
661
}
662
663
664
665

NODE_DISPLAY_NAME_MAPPINGS = {
    "SamplerEulerAncestralCFGPP": "SamplerEulerAncestralCFG++",
}