nodes_custom_sampler.py 5.77 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "_for_testing/custom_sampling"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, model, scheduler, steps):
        sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, steps).cpu()
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "_for_testing/custom_sampling"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
    CATEGORY = "_for_testing/custom_sampling"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
61
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
62
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67

class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
68
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
76
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "_for_testing/custom_sampling"

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
77
        sampler = comfy.samplers.sampler_class(sampler_name)()
comfyanonymous's avatar
comfyanonymous committed
78
79
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "_for_testing/custom_sampling"

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})()
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
109
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

    CATEGORY = "_for_testing/custom_sampling"

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
130
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

        disable_pbar = False
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
    "KarrasScheduler": KarrasScheduler,
    "KSamplerSelect": KSamplerSelect,
comfyanonymous's avatar
comfyanonymous committed
159
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
160
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
161
    "SplitSigmas": SplitSigmas,
comfyanonymous's avatar
comfyanonymous committed
162
}