nodes_custom_sampler.py 15 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
6
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
7

8
9
10
11
12
13
14
15

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
16
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
17
18
19
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
20
    CATEGORY = "sampling/custom_sampling/schedulers"
21
22
23

    FUNCTION = "get_sigmas"

24
25
26
27
28
    def get_sigmas(self, model, scheduler, steps, denoise):
        total_steps = steps
        if denoise < 1.0:
            total_steps = int(steps/denoise)

29
30
        comfy.model_management.load_models_gpu([model])
        sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
31
        sigmas = sigmas[-(steps + 1):]
32
33
34
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
35
36
37
38
39
40
41
42
43
44
45
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
46
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

54
55
56
57
58
59
60
61
62
63
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
64
    CATEGORY = "sampling/custom_sampling/schedulers"
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
83
    CATEGORY = "sampling/custom_sampling/schedulers"
84
85
86
87
88
89
90

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
class SDTurboScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
97
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
98
99
100
101
102
103
104
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/schedulers"

    FUNCTION = "get_sigmas"

105
106
107
    def get_sigmas(self, model, steps, denoise):
        start_step = 10 - int(10 * denoise)
        timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
108
109
        comfy.model_management.load_models_gpu([model])
        sigmas = model.model.model_sampling.sigma(timesteps)
comfyanonymous's avatar
comfyanonymous committed
110
111
112
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
118
119
120
121
122
123
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
124
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
125
126
127
128
129
130
131

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
132
133
134
135
136
137
138
139
140
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
141
    CATEGORY = "sampling/custom_sampling/sigmas"
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
147
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
148
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
class FlipSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas):
        sigmas = sigmas.flip(0)
        if sigmas[0] == 0:
            sigmas[0] = 0.0001
        return (sigmas,)

comfyanonymous's avatar
comfyanonymous committed
168
169
170
171
class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
172
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
173
174
175
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
176
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
177
178
179
180

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
181
        sampler = comfy.samplers.sampler_object(sampler_name)
comfyanonymous's avatar
comfyanonymous committed
182
183
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
class SamplerDPMPP_3M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_3m_sde"
        else:
            sampler_name = "dpmpp_3m_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
206
207
208
209
210
211
212
213
214
215
216
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
217
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
218
219
220
221
222
223
224
225

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
226
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
comfyanonymous's avatar
comfyanonymous committed
227
228
229
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
230
231
232
233
234
235
236
237
238
239
240
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
241
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
242
243
244
245
246
247
248
249

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
250
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
comfyanonymous's avatar
comfyanonymous committed
251
252
        return (sampler, )

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
class SamplerEulerAncestral:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise):
        sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
class SamplerLMS:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 4, "min": 1, "max": 100}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order):
        sampler = comfy.samplers.ksampler("lms", {"order": order})
        return (sampler, )

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class SamplerDPMAdaptative:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 3, "min": 2, "max": 3}),
                     "rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise):
        sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff,
                                                              "icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta,
                                                              "s_noise":s_noise })
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
318
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
319
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
320
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
321
322
323
324
325
326
327
328
329
330
331
332
333
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

334
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
335
336
337
338

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
339
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
340
341
342
343
344
345
346
347
348
349
350
351
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

352
        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
comfyanonymous's avatar
comfyanonymous committed
353
354
355
356
357
358
359
360
361
362
363
364
365
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
366
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
367
    "KarrasScheduler": KarrasScheduler,
368
369
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
370
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
371
    "SDTurboScheduler": SDTurboScheduler,
comfyanonymous's avatar
comfyanonymous committed
372
    "KSamplerSelect": KSamplerSelect,
373
    "SamplerEulerAncestral": SamplerEulerAncestral,
comfyanonymous's avatar
comfyanonymous committed
374
    "SamplerLMS": SamplerLMS,
comfyanonymous's avatar
comfyanonymous committed
375
    "SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE,
comfyanonymous's avatar
comfyanonymous committed
376
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
377
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
378
    "SamplerDPMAdaptative": SamplerDPMAdaptative,
comfyanonymous's avatar
comfyanonymous committed
379
    "SplitSigmas": SplitSigmas,
380
    "FlipSigmas": FlipSigmas,
comfyanonymous's avatar
comfyanonymous committed
381
}