nodes_custom_sampler.py 9.33 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6

7
8
9
10
11
12
13
14
15
16
17

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
18
    CATEGORY = "sampling/custom_sampling"
19
20
21
22
23
24
25
26

    FUNCTION = "get_sigmas"

    def get_sigmas(self, model, scheduler, steps):
        sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, steps).cpu()
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
31
32
33
34
35
36
37
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
38
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
43
44
45

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

46
47
48
49
50
51
52
53
54
55
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
56
    CATEGORY = "sampling/custom_sampling"
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
75
    CATEGORY = "sampling/custom_sampling"
76
77
78
79
80
81
82

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
88
89
90
91
92
93
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
94
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
95
96
97
98
99
100
101

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
108
109
110
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
111
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
112
113
114
115
116

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
117
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
118
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
119
120
121
122
123

class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
124
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
125
126
127
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
128
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
129
130
131
132

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
133
        sampler = comfy.samplers.sampler_class(sampler_name)()
comfyanonymous's avatar
comfyanonymous committed
134
135
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
136
137
138
139
140
141
142
143
144
145
146
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
147
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
148
149
150
151
152
153
154
155
156
157
158
159

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})()
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
160
161
162
163
164
165
166
167
168
169
170
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
171
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
172
173
174
175
176
177
178
179
180
181
182

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})()
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
183
184
185
186
187
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
188
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

204
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
205
206
207
208

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
209
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

        disable_pbar = False
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
    "KarrasScheduler": KarrasScheduler,
237
238
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
239
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
240
    "KSamplerSelect": KSamplerSelect,
comfyanonymous's avatar
comfyanonymous committed
241
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
242
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
243
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
244
    "SplitSigmas": SplitSigmas,
comfyanonymous's avatar
comfyanonymous committed
245
}