nodes_custom_sampler.py 20.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
6
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
7

8
9
10
11
12
13
14
15

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
16
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
17
18
19
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
20
    CATEGORY = "sampling/custom_sampling/schedulers"
21
22
23

    FUNCTION = "get_sigmas"

24
25
26
    def get_sigmas(self, model, scheduler, steps, denoise):
        total_steps = steps
        if denoise < 1.0:
comfyanonymous's avatar
comfyanonymous committed
27
28
            if denoise <= 0.0:
                return (torch.FloatTensor([]),)
29
30
            total_steps = int(steps/denoise)

31
        sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu()
32
        sigmas = sigmas[-(steps + 1):]
33
34
35
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
36
37
38
39
40
41
42
43
44
45
46
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
47
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
48
49
50
51
52
53
54

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

55
56
57
58
59
60
61
62
63
64
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
65
    CATEGORY = "sampling/custom_sampling/schedulers"
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
84
    CATEGORY = "sampling/custom_sampling/schedulers"
85
86
87
88
89
90
91

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
class SDTurboScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
98
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
99
100
101
102
103
104
105
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/schedulers"

    FUNCTION = "get_sigmas"

106
107
108
    def get_sigmas(self, model, steps, denoise):
        start_step = 10 - int(10 * denoise)
        timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
109
110
        comfy.model_management.load_models_gpu([model])
        sigmas = model.model.model_sampling.sigma(timesteps)
comfyanonymous's avatar
comfyanonymous committed
111
112
113
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
114
115
116
117
118
119
120
121
122
123
124
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
125
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
126
127
128
129
130
131
132

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
139
140
141
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
142
    CATEGORY = "sampling/custom_sampling/sigmas"
comfyanonymous's avatar
comfyanonymous committed
143
144
145
146
147

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
148
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
149
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
class FlipSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas):
comfyanonymous's avatar
comfyanonymous committed
164
165
166
        if len(sigmas) == 0:
            return (sigmas,)

167
168
169
170
171
        sigmas = sigmas.flip(0)
        if sigmas[0] == 0:
            sigmas[0] = 0.0001
        return (sigmas,)

comfyanonymous's avatar
comfyanonymous committed
172
173
174
175
class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
176
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
177
178
179
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
180
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
181
182
183
184

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
185
        sampler = comfy.samplers.sampler_object(sampler_name)
comfyanonymous's avatar
comfyanonymous committed
186
187
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
class SamplerDPMPP_3M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_3m_sde"
        else:
            sampler_name = "dpmpp_3m_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
210
211
212
213
214
215
216
217
218
219
220
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
221
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
222
223
224
225
226
227
228
229

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
230
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
comfyanonymous's avatar
comfyanonymous committed
231
232
233
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
234
235
236
237
238
239
240
241
242
243
244
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
245
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
246
247
248
249
250
251
252
253

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
254
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
comfyanonymous's avatar
comfyanonymous committed
255
256
        return (sampler, )

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class SamplerEulerAncestral:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise):
        sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
class SamplerLMS:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 4, "min": 1, "max": 100}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order):
        sampler = comfy.samplers.ksampler("lms", {"order": order})
        return (sampler, )

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
class SamplerDPMAdaptative:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 3, "min": 2, "max": 3}),
                     "rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise):
        sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff,
                                                              "icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta,
                                                              "s_noise":s_noise })
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
class Noise_EmptyNoise:
    def __init__(self):
        self.seed = 0

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
        return torch.zeros(shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")


class Noise_RandomNoise:
    def __init__(self, seed):
        self.seed = seed

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
        batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
        return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds)

comfyanonymous's avatar
comfyanonymous committed
335
336
337
338
339
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
340
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
341
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
342
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
343
344
345
346
347
348
349
350
351
352
353
354
355
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

356
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
357
358
359
360

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
361
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
362
            noise = Noise_EmptyNoise().generate_noise(latent)
comfyanonymous's avatar
comfyanonymous committed
363
        else:
comfyanonymous's avatar
comfyanonymous committed
364
            noise = Noise_RandomNoise(noise_seed).generate_noise(latent)
comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
369
370
371
372

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

373
        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
379
380
381
382
383
384
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
class Guider_Basic(comfy.samplers.CFGGuider):
    def set_conds(self, positive):
        self.inner_set_conds({"positive": positive})

class BasicGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "conditioning": ("CONDITIONING", ),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, conditioning):
        guider = Guider_Basic(model)
        guider.set_conds(conditioning)
        return (guider,)
comfyanonymous's avatar
comfyanonymous committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

class CFGGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, positive, negative, cfg):
        guider = comfy.samplers.CFGGuider(model)
comfyanonymous's avatar
comfyanonymous committed
426
        guider.set_conds(positive, negative)
comfyanonymous's avatar
comfyanonymous committed
427
428
429
        guider.set_cfg(cfg)
        return (guider,)

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
class Guider_DualCFG(comfy.samplers.CFGGuider):
    def set_cfg(self, cfg1, cfg2):
        self.cfg1 = cfg1
        self.cfg2 = cfg2

    def set_conds(self, positive, middle, negative):
        self.inner_set_conds({"positive": positive, "middle": middle, "negative": negative})

    def predict_noise(self, x, timestep, model_options={}, seed=None):
        out = comfy.samplers.calc_cond_batch(self.inner_model, [self.conds.get("negative", None), self.conds.get("middle", None), self.conds.get("positive", None)], x, timestep, model_options)
        return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options) + (out[2] - out[1]) * self.cfg1

class DualCFGGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "cond1": ("CONDITIONING", ),
                    "cond2": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "cfg_conds": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                    "cfg_cond2_negative": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative):
        guider = Guider_DualCFG(model)
        guider.set_conds(cond1, cond2, negative)
        guider.set_cfg(cfg_conds, cfg_cond2_negative)
        return (guider,)
comfyanonymous's avatar
comfyanonymous committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

class DisableNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                     }
                }

    RETURN_TYPES = ("NOISE",)
    FUNCTION = "get_noise"
    CATEGORY = "sampling/custom_sampling/noise"

    def get_noise(self, noise_seed):
        return (Noise_EmptyNoise(),)


class RandomNoise(DisableNoise):
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     }
                }

    def get_noise(self, noise_seed):
        return (Noise_RandomNoise(noise_seed),)


class SamplerCustomAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"noise": ("NOISE", ),
                    "guider": ("GUIDER", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

    CATEGORY = "sampling/custom_sampling"

    def sample(self, noise, guider, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output)

        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
        samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
        samples = samples.to(comfy.model_management.intermediate_device())

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

comfyanonymous's avatar
comfyanonymous committed
536
537
NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
538
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
539
    "KarrasScheduler": KarrasScheduler,
540
541
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
542
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
543
    "SDTurboScheduler": SDTurboScheduler,
comfyanonymous's avatar
comfyanonymous committed
544
    "KSamplerSelect": KSamplerSelect,
545
    "SamplerEulerAncestral": SamplerEulerAncestral,
comfyanonymous's avatar
comfyanonymous committed
546
    "SamplerLMS": SamplerLMS,
comfyanonymous's avatar
comfyanonymous committed
547
    "SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE,
comfyanonymous's avatar
comfyanonymous committed
548
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
549
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
550
    "SamplerDPMAdaptative": SamplerDPMAdaptative,
comfyanonymous's avatar
comfyanonymous committed
551
    "SplitSigmas": SplitSigmas,
552
    "FlipSigmas": FlipSigmas,
comfyanonymous's avatar
comfyanonymous committed
553
554

    "CFGGuider": CFGGuider,
555
    "DualCFGGuider": DualCFGGuider,
556
    "BasicGuider": BasicGuider,
comfyanonymous's avatar
comfyanonymous committed
557
558
559
    "RandomNoise": RandomNoise,
    "DisableNoise": DisableNoise,
    "SamplerCustomAdvanced": SamplerCustomAdvanced,
comfyanonymous's avatar
comfyanonymous committed
560
}