nodes_custom_sampler.py 19.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
6
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
7

8
9
10
11
12
13
14
15

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
16
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
17
18
19
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
20
    CATEGORY = "sampling/custom_sampling/schedulers"
21
22
23

    FUNCTION = "get_sigmas"

24
25
26
    def get_sigmas(self, model, scheduler, steps, denoise):
        total_steps = steps
        if denoise < 1.0:
comfyanonymous's avatar
comfyanonymous committed
27
28
            if denoise <= 0.0:
                return (torch.FloatTensor([]),)
29
30
            total_steps = int(steps/denoise)

31
32
        comfy.model_management.load_models_gpu([model])
        sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
33
        sigmas = sigmas[-(steps + 1):]
34
35
36
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45
46
47
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
48
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
49
50
51
52
53
54
55

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

56
57
58
59
60
61
62
63
64
65
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
66
    CATEGORY = "sampling/custom_sampling/schedulers"
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
85
    CATEGORY = "sampling/custom_sampling/schedulers"
86
87
88
89
90
91
92

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
class SDTurboScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
99
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
105
106
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/schedulers"

    FUNCTION = "get_sigmas"

107
108
109
    def get_sigmas(self, model, steps, denoise):
        start_step = 10 - int(10 * denoise)
        timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
110
111
        comfy.model_management.load_models_gpu([model])
        sigmas = model.model.model_sampling.sigma(timesteps)
comfyanonymous's avatar
comfyanonymous committed
112
113
114
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
115
116
117
118
119
120
121
122
123
124
125
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
126
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
131
132
133

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
138
139
140
141
142
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
143
    CATEGORY = "sampling/custom_sampling/sigmas"
comfyanonymous's avatar
comfyanonymous committed
144
145
146
147
148

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
149
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
150
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
class FlipSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas):
comfyanonymous's avatar
comfyanonymous committed
165
166
167
        if len(sigmas) == 0:
            return (sigmas,)

168
169
170
171
172
        sigmas = sigmas.flip(0)
        if sigmas[0] == 0:
            sigmas[0] = 0.0001
        return (sigmas,)

comfyanonymous's avatar
comfyanonymous committed
173
174
175
176
class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
177
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
178
179
180
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
181
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
182
183
184
185

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
186
        sampler = comfy.samplers.sampler_object(sampler_name)
comfyanonymous's avatar
comfyanonymous committed
187
188
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
class SamplerDPMPP_3M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_3m_sde"
        else:
            sampler_name = "dpmpp_3m_sde_gpu"
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
211
212
213
214
215
216
217
218
219
220
221
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
222
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
223
224
225
226
227
228
229
230

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
231
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
comfyanonymous's avatar
comfyanonymous committed
232
233
234
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
235
236
237
238
239
240
241
242
243
244
245
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
246
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
247
248
249
250
251
252
253
254

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
255
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
comfyanonymous's avatar
comfyanonymous committed
256
257
        return (sampler, )

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
class SamplerEulerAncestral:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise):
        sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
class SamplerLMS:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 4, "min": 1, "max": 100}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order):
        sampler = comfy.samplers.ksampler("lms", {"order": order})
        return (sampler, )

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
class SamplerDPMAdaptative:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"order": ("INT", {"default": 3, "min": 2, "max": 3}),
                     "rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
    CATEGORY = "sampling/custom_sampling/samplers"

    FUNCTION = "get_sampler"

    def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise):
        sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff,
                                                              "icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta,
                                                              "s_noise":s_noise })
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
class Noise_EmptyNoise:
    def __init__(self):
        self.seed = 0

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
        return torch.zeros(shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")


class Noise_RandomNoise:
    def __init__(self, seed):
        self.seed = seed

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
        batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
        return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds)

comfyanonymous's avatar
comfyanonymous committed
336
337
338
339
340
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
341
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
342
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
343
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
344
345
346
347
348
349
350
351
352
353
354
355
356
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

357
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
358
359
360
361

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
362
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
363
            noise = Noise_EmptyNoise().generate_noise(latent)
comfyanonymous's avatar
comfyanonymous committed
364
        else:
comfyanonymous's avatar
comfyanonymous committed
365
            noise = Noise_RandomNoise(noise_seed).generate_noise(latent)
comfyanonymous's avatar
comfyanonymous committed
366
367
368
369
370
371
372
373

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

374
        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
comfyanonymous's avatar
comfyanonymous committed
375
376
377
378
379
380
381
382
383
384
385
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
class Guider_Basic(comfy.samplers.CFGGuider):
    def set_conds(self, positive):
        self.inner_set_conds({"positive": positive})

class BasicGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "conditioning": ("CONDITIONING", ),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, conditioning):
        guider = Guider_Basic(model)
        guider.set_conds(conditioning)
        return (guider,)
comfyanonymous's avatar
comfyanonymous committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

class CFGGuider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                     }
                }

    RETURN_TYPES = ("GUIDER",)

    FUNCTION = "get_guider"
    CATEGORY = "sampling/custom_sampling/guiders"

    def get_guider(self, model, positive, negative, cfg):
        guider = comfy.samplers.CFGGuider(model)
comfyanonymous's avatar
comfyanonymous committed
427
        guider.set_conds(positive, negative)
comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        guider.set_cfg(cfg)
        return (guider,)


class DisableNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                     }
                }

    RETURN_TYPES = ("NOISE",)
    FUNCTION = "get_noise"
    CATEGORY = "sampling/custom_sampling/noise"

    def get_noise(self, noise_seed):
        return (Noise_EmptyNoise(),)


class RandomNoise(DisableNoise):
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     }
                }

    def get_noise(self, noise_seed):
        return (Noise_RandomNoise(noise_seed),)


class SamplerCustomAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"noise": ("NOISE", ),
                    "guider": ("GUIDER", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

    CATEGORY = "sampling/custom_sampling"

    def sample(self, noise, guider, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output)

        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
        samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
        samples = samples.to(comfy.model_management.intermediate_device())

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

comfyanonymous's avatar
comfyanonymous committed
502
503
NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
504
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
505
    "KarrasScheduler": KarrasScheduler,
506
507
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
508
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
509
    "SDTurboScheduler": SDTurboScheduler,
comfyanonymous's avatar
comfyanonymous committed
510
    "KSamplerSelect": KSamplerSelect,
511
    "SamplerEulerAncestral": SamplerEulerAncestral,
comfyanonymous's avatar
comfyanonymous committed
512
    "SamplerLMS": SamplerLMS,
comfyanonymous's avatar
comfyanonymous committed
513
    "SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE,
comfyanonymous's avatar
comfyanonymous committed
514
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
515
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
516
    "SamplerDPMAdaptative": SamplerDPMAdaptative,
comfyanonymous's avatar
comfyanonymous committed
517
    "SplitSigmas": SplitSigmas,
518
    "FlipSigmas": FlipSigmas,
comfyanonymous's avatar
comfyanonymous committed
519
520

    "CFGGuider": CFGGuider,
521
    "BasicGuider": BasicGuider,
comfyanonymous's avatar
comfyanonymous committed
522
523
524
    "RandomNoise": RandomNoise,
    "DisableNoise": DisableNoise,
    "SamplerCustomAdvanced": SamplerCustomAdvanced,
comfyanonymous's avatar
comfyanonymous committed
525
}