sd1_clip.py 20.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
9
from . import model_management
import contextlib
10
11
import comfy.clip_model
import json
comfyanonymous's avatar
comfyanonymous committed
12

13
14
15
16
17
18
19
20
21
22
23
24
def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

comfyanonymous's avatar
comfyanonymous committed
25
26
class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
27
28
29
        to_encode = list()
        max_token_len = 0
        has_weights = False
comfyanonymous's avatar
comfyanonymous committed
30
        for x in token_weight_pairs:
31
            tokens = list(map(lambda a: a[0], x))
32
33
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
34
35
            to_encode.append(tokens)

36
37
38
39
        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

40
        out, pooled = self.encode(to_encode)
41
        if pooled is not None:
42
            first_pooled = pooled[0:1].to(model_management.intermediate_device())
43
        else:
44
            first_pooled = pooled
45
46

        output = []
47
        for k in range(0, sections):
48
            z = out[k:k+1]
49
50
51
52
53
54
55
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
56
57
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
58
        if (len(output) == 0):
59
60
            return out[-1:].to(model_management.intermediate_device()), first_pooled
        return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled
comfyanonymous's avatar
comfyanonymous committed
61

62
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
69
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
70
71
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
72
73
        super().__init__()
        assert layer in self.LAYERS
74
75
76
77
78
79
80
81
82

        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")

        with open(textmodel_json_config) as f:
            config = json.load(f)

        self.transformer = model_class(config, dtype, device, comfy.ops)
        self.num_layers = self.transformer.num_layers
83

comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
89
        self.special_tokens = special_tokens
90
91
        self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
92
        self.enable_attention_masks = False
93

94
        self.layer_norm_hidden_state = layer_norm_hidden_state
comfyanonymous's avatar
comfyanonymous committed
95
96
        if layer == "hidden":
            assert layer_idx is not None
97
            assert abs(layer_idx) < self.num_layers
comfyanonymous's avatar
comfyanonymous committed
98
            self.clip_layer(layer_idx)
99
        self.layer_default = (self.layer, self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
105
106
107

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
108
        if abs(layer_idx) > self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

114
115
116
117
    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

118
119
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
120
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
121
122
123
124
125
126
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
127
128
                    if y == token_dict_size: #EOS token
                        y = -1
129
130
                    tokens_temp += [y]
                else:
131
132
133
134
135
136
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
137
            while len(tokens_temp) < len(x):
138
                tokens_temp += [self.special_tokens["pad"]]
139
140
            out_tokens += [tokens_temp]

141
        n = token_dict_size
142
        if len(embedding_weights) > 0:
143
144
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
145
146
147
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
148
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
149
            self.transformer.set_input_embeddings(new_embedding)
150
151
152
153
154
155

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
156

comfyanonymous's avatar
comfyanonymous committed
157
    def forward(self, tokens):
158
        backup_embeds = self.transformer.get_input_embeddings()
159
        device = backup_embeds.weight.device
160
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
161
162
        tokens = torch.LongTensor(tokens).to(device)

163
        if self.transformer.dtype != torch.float32:
164
            precision_scope = torch.autocast
comfyanonymous's avatar
comfyanonymous committed
165
        else:
comfyanonymous's avatar
comfyanonymous committed
166
            precision_scope = lambda a, dtype: contextlib.nullcontext(a)
167

168
        with precision_scope(model_management.get_autocast_device(device), dtype=torch.float32):
169
170
171
172
173
174
175
176
177
178
            attention_mask = None
            if self.enable_attention_masks:
                attention_mask = torch.zeros_like(tokens)
                max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
                for x in range(attention_mask.shape[0]):
                    for y in range(attention_mask.shape[1]):
                        attention_mask[x, y] = 1
                        if tokens[x, y] == max_token:
                            break

179
            outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
180
181
182
            self.transformer.set_input_embeddings(backup_embeds)

            if self.layer == "last":
183
                z = outputs[0]
184
            else:
185
                z = outputs[1]
186

187
188
            if outputs[2] is not None:
                pooled_output = outputs[2].float()
189
190
            else:
                pooled_output = None
191

192
            if self.text_projection is not None and pooled_output is not None:
193
                pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
194
        return z.float(), pooled_output
comfyanonymous's avatar
comfyanonymous committed
195
196
197
198

    def encode(self, tokens):
        return self(tokens)

199
    def load_sd(self, sd):
200
201
202
203
        if "text_projection" in sd:
            self.text_projection[:] = sd.pop("text_projection")
        if "text_projection.weight" in sd:
            self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
204
205
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

283
284
285
286
287
288
289
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
290

291
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
292
293
294
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

295
296
    embedding_directory = expand_directory_list(embedding_directory)

297
298
    valid_file = None
    for embed_dir in embedding_directory:
299
300
301
302
303
304
305
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
306
307
308
309
310
311
312
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
313
        else:
314
315
316
317
318
319
320
321
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
322

323
324
    embed_out = None

325
326
327
328
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
329
        else:
330
            if 'weights_only' in torch.load.__code__.co_varnames:
331
332
333
334
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
335
336
337
338
339
340
341
342
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

343
344
345
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
346
347
348
349
350
351
352
353
354
355
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
356
357
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
358
359
        else:
            values = embed.values()
360
            embed_out = next(iter(values))
361
    return embed_out
362

363
class SDTokenizer:
364
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
comfyanonymous's avatar
comfyanonymous committed
365
366
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
367
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
comfyanonymous's avatar
comfyanonymous committed
368
        self.max_length = max_length
369

comfyanonymous's avatar
comfyanonymous committed
370
        empty = self.tokenizer('')["input_ids"]
371
372
373
374
375
376
377
378
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
comfyanonymous's avatar
comfyanonymous committed
379
        self.pad_with_end = pad_with_end
380
381
        self.pad_to_max_length = pad_to_max_length

comfyanonymous's avatar
comfyanonymous committed
382
383
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
384
385
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
386
        self.embedding_identifier = "embedding:"
387
        self.embedding_size = embedding_size
388
        self.embedding_key = embedding_key
389

390
    def _try_get_embedding(self, embedding_name:str):
391
392
393
394
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
395
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
396
397
398
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
399
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
400
401
402
403
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


404
    def tokenize_with_weights(self, text:str, return_word_ids=False):
405
406
407
408
409
410
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
411
412
413
414
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
415
416
417
418

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

419
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
420
        tokens = []
421
422
423
424
425
426
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
427
428
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
429
                    if embed is None:
430
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
431
                    else:
432
                        if len(embed.shape) == 1:
433
                            tokens.append([(embed, weight)])
434
                        else:
435
436
437
438
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
439
                    else:
440
441
                        continue
                #parse word
442
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
443

444
445
        #reshape token array to CLIP input size
        batched_tokens = []
446
447
448
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
449
450
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
451
452
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
453

454
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
455
456
457
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
458
459
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
460
                        batch.append((self.end_token, 1.0, 0))
461
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
462
                    #add end token and pad
463
                    else:
BlenderNeko's avatar
BlenderNeko committed
464
                        batch.append((self.end_token, 1.0, 0))
465
466
                        if self.pad_to_max_length:
                            batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
BlenderNeko's avatar
BlenderNeko committed
467
                    #start new batch
468
469
470
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
471
                    batched_tokens.append(batch)
472
                else:
473
474
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
475

476
        #fill last batch
477
478
479
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
            batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
comfyanonymous's avatar
comfyanonymous committed
480

481
482
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
483

484
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
485
486
487
488


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506


class SD1Tokenizer:
    def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)


class SD1ClipModel(torch.nn.Module):
507
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
508
509
510
        super().__init__()
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
511
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
512
513
514
515
516
517
518
519
520
521
522
523
524
525

    def clip_layer(self, layer_idx):
        getattr(self, self.clip).clip_layer(layer_idx)

    def reset_clip_layer(self):
        getattr(self, self.clip).reset_clip_layer()

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
        out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out, pooled

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)