supported_models.py 20.4 KB
Newer Older
1
2
3
4
5
6
7
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
8
from . import sd3_clip
9
from . import sa_t5
10
import comfy.text_encoders.aura_t5
11
12

from . import supported_models_base
13
from . import latent_formats
14

15
16
from . import diffusers_convert

17
18
19
20
21
22
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
23
        "use_temporal_attention": False,
24
25
26
27
28
29
30
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

31
    latent_format = latent_formats.SD15
32
33
34
35
36
37
38
39
40
41
42
43
44

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

45
        replace_prefix = {}
46
47
        replace_prefix["cond_stage_model."] = "clip_l."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
48
49
        return state_dict

50
    def process_clip_state_dict_for_saving(self, state_dict):
51
52
53
54
55
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict:
                state_dict.pop(p)

56
57
58
        replace_prefix = {"clip_l.": "cond_stage_model."}
        return utils.state_dict_prefix_replace(state_dict, replace_prefix)

59
    def clip_target(self, state_dict={}):
60
61
62
63
64
65
66
67
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
68
        "use_temporal_attention": False,
69
70
    }

71
72
73
74
75
76
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
        "attn_precision": torch.float32,
    }

77
    latent_format = latent_formats.SD15
78

79
    def model_type(self, state_dict, prefix=""):
80
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
81
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
comfyanonymous's avatar
comfyanonymous committed
82
83
            out = state_dict.get(k, None)
            if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
84
85
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
86
87

    def process_clip_state_dict(self, state_dict):
88
        replace_prefix = {}
89
90
91
        replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
        replace_prefix["cond_stage_model.model."] = "clip_h."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
92
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
93
94
        return state_dict

95
96
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
97
        replace_prefix["clip_h"] = "cond_stage_model.model"
98
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
99
100
101
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

102
    def clip_target(self, state_dict={}):
103
104
105
106
107
108
109
110
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
comfyanonymous's avatar
comfyanonymous committed
111
        "use_temporal_attention": False,
112
113
114
115
116
117
118
119
120
121
122
123
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
comfyanonymous's avatar
comfyanonymous committed
124
        "use_temporal_attention": False,
125
126
127
128
129
130
131
132
133
134
135
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
136
        "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
comfyanonymous's avatar
comfyanonymous committed
137
        "use_temporal_attention": False,
138
139
    }

140
    latent_format = latent_formats.SDXL
141

142
143
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXLRefiner(self, device=device)
144
145
146
147

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}
148
149
        replace_prefix["conditioner.embedders.0.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
150

151
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
152
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
153
154
        return state_dict

155
156
157
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
158
159
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
160
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
161
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
162
163
        return state_dict_g

164
    def clip_target(self, state_dict={}):
165
166
167
168
169
170
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
171
        "transformer_depth": [0, 0, 2, 2, 10, 10],
172
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
173
174
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
175
176
    }

177
    latent_format = latent_formats.SDXL
178

179
    def model_type(self, state_dict, prefix=""):
180
181
182
183
184
185
        if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
            self.latent_format = latent_formats.SDXL_Playground_2_5()
            self.sampling_settings["sigma_data"] = 0.5
            self.sampling_settings["sigma_max"] = 80.0
            self.sampling_settings["sigma_min"] = 0.002
            return model_base.ModelType.EDM
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189
190
        elif "edm_vpred.sigma_max" in state_dict:
            self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item())
            if "edm_vpred.sigma_min" in state_dict:
                self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item())
            return model_base.ModelType.V_PREDICTION_EDM
191
        elif "v_pred" in state_dict:
192
193
194
195
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

196
    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
197
198
199
200
        out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
        if self.inpaint_model():
            out.set_inpaint()
        return out
201
202
203
204
205

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

206
207
208
209
        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
        replace_prefix["conditioner.embedders.1.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)

210
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
211
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
212
213
        return state_dict

214
215
216
217
218
219
220
221
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

222
223
224
225
226
227
        state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict_g:
                state_dict_g.pop(p)

228
229
        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
230
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
231
232
        return state_dict_g

233
    def clip_target(self, state_dict={}):
234
235
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)

236
237
238
239
240
241
class SSD1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 4, 4],
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
242
243
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
244
245
    }

comfyanonymous's avatar
comfyanonymous committed
246
247
248
249
250
251
252
253
254
255
class Segmind_Vega(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 1, 1, 2, 2],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
class KOALA_700M(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 5],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

class KOALA_1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 6],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
276
277
278
279
280
281
282
283
284
285
286
287
class SVD_img2vid(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 768,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

288
289
290
291
292
293
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
        "attn_precision": torch.float32,
    }

comfyanonymous's avatar
comfyanonymous committed
294
295
296
297
298
299
300
301
302
303
    clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."

    latent_format = latent_formats.SD15

    sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SVD_img2vid(self, device=device)
        return out

304
    def clip_target(self, state_dict={}):
comfyanonymous's avatar
comfyanonymous committed
305
        return None
306

comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class SV3D_u(SVD_img2vid):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 256,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

    vae_key_prefix = ["conditioner.embedders.1.encoder."]

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_u(self, device=device)
        return out

class SV3D_p(SV3D_u):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 1280,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }


    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_p(self, device=device)
        return out

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
class Stable_Zero123(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

comfyanonymous's avatar
comfyanonymous committed
357
358
359
360
361
    required_keys = {
        "cc_projection.weight": None,
        "cc_projection.bias": None,
    }

362
363
364
365
366
367
368
369
    clip_vision_prefix = "cond_stage_model.model.visual."

    latent_format = latent_formats.SD15

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
        return out

370
    def clip_target(self, state_dict={}):
371
372
        return None

373
374
375
376
377
378
379
380
381
382
383
384
class SD_X4Upscaler(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 256,
        'in_channels': 7,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
        "use_temporal_attention": False,
    }

    unet_extra_config = {
        "disable_self_attentions": [True, True, True, False],
385
        "num_classes": 1000,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        "num_heads": 8,
        "num_head_channels": -1,
    }

    latent_format = latent_formats.SD_X4

    sampling_settings = {
        "linear_start": 0.0001,
        "linear_end": 0.02,
    }

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD_X4Upscaler(self, device=device)
        return out
400

comfyanonymous's avatar
comfyanonymous committed
401
402
403
404
405
406
407
408
409
410
class Stable_Cascade_C(supported_models_base.BASE):
    unet_config = {
        "stable_cascade_stage": 'c',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_Prior
    supported_inference_dtypes = [torch.bfloat16, torch.float32]

411
412
413
414
    sampling_settings = {
        "shift": 2.0,
    }

415
416
417
418
    vae_key_prefix = ["vae."]
    text_encoder_key_prefix = ["text_encoder."]
    clip_vision_prefix = "clip_l_vision."

comfyanonymous's avatar
comfyanonymous committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    def process_unet_state_dict(self, state_dict):
        key_list = list(state_dict.keys())
        for y in ["weight", "bias"]:
            suffix = "in_proj_{}".format(y)
            keys = filter(lambda a: a.endswith(suffix), key_list)
            for k_from in keys:
                weights = state_dict.pop(k_from)
                prefix = k_from[:-(len(suffix) + 1)]
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["to_q", "to_k", "to_v"]
                    k_to = "{}.{}.{}".format(prefix, p[x], y)
                    state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
        return state_dict

434
435
436
437
438
439
    def process_clip_state_dict(self, state_dict):
        state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
        if "clip_g.text_projection" in state_dict:
            state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
        return state_dict

comfyanonymous's avatar
comfyanonymous committed
440
441
442
443
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_C(self, device=device)
        return out

444
    def clip_target(self, state_dict={}):
445
        return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
comfyanonymous's avatar
comfyanonymous committed
446

comfyanonymous's avatar
comfyanonymous committed
447
448
449
450
451
452
453
454
455
456
class Stable_Cascade_B(Stable_Cascade_C):
    unet_config = {
        "stable_cascade_stage": 'b',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_B
    supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]

457
458
459
460
    sampling_settings = {
        "shift": 1.0,
    }

461
462
    clip_vision_prefix = None

comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_B(self, device=device)
        return out

comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
class SD15_instructpix2pix(SD15):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SD15_instructpix2pix(self, device=device)

class SDXL_instructpix2pix(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 10, 10],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
492
        return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
comfyanonymous's avatar
comfyanonymous committed
493

comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
499
500
501
502
503
504
505
class SD3(supported_models_base.BASE):
    unet_config = {
        "in_channels": 16,
        "pos_embed_scaling_factor": None,
    }

    sampling_settings = {
        "shift": 3.0,
    }

    unet_extra_config = {}
    latent_format = latent_formats.SD3
506
    text_encoder_key_prefix = ["text_encoders."]
comfyanonymous's avatar
comfyanonymous committed
507
508
509
510
511

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD3(self, device=device)
        return out

512
513
514
515
    def clip_target(self, state_dict={}):
        clip_l = False
        clip_g = False
        t5 = False
516
        dtype_t5 = None
517
518
519
520
521
        pref = self.text_encoder_key_prefix[0]
        if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
            clip_l = True
        if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
            clip_g = True
522
523
        t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
        if t5_key in state_dict:
524
            t5 = True
525
            dtype_t5 = state_dict[t5_key].dtype
526

527
        return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5))
comfyanonymous's avatar
comfyanonymous committed
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
class StableAudio(supported_models_base.BASE):
    unet_config = {
        "audio_model": "dit1.0",
    }

    sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03}

    unet_extra_config = {}
    latent_format = latent_formats.StableAudio1

    text_encoder_key_prefix = ["text_encoders."]
    vae_key_prefix = ["pretransform.model."]

    def get_model(self, state_dict, prefix="", device=None):
        seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True)
        seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True)
        return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device)

    def process_unet_state_dict(self, state_dict):
        for k in list(state_dict.keys()):
            if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero
                state_dict.pop(k)
        return state_dict

553
554
555
556
    def process_unet_state_dict_for_saving(self, state_dict):
        replace_prefix = {"": "model.model."}
        return utils.state_dict_prefix_replace(state_dict, replace_prefix)

557
558
559
    def clip_target(self, state_dict={}):
        return supported_models_base.ClipTarget(sa_t5.SAT5Tokenizer, sa_t5.SAT5Model)

560
561
562
563
564
565
566
class AuraFlow(supported_models_base.BASE):
    unet_config = {
        "cond_seq_dim": 2048,
    }

    sampling_settings = {
        "multiplier": 1.0,
567
        "shift": 1.73,
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    }

    unet_extra_config = {}
    latent_format = latent_formats.SDXL

    vae_key_prefix = ["vae."]
    text_encoder_key_prefix = ["text_encoders."]

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.AuraFlow(self, device=device)
        return out

    def clip_target(self, state_dict={}):
        return supported_models_base.ClipTarget(comfy.text_encoders.aura_t5.AuraT5Tokenizer, comfy.text_encoders.aura_t5.AuraT5Model)
comfyanonymous's avatar
comfyanonymous committed
582

583
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow]
comfyanonymous's avatar
comfyanonymous committed
584

comfyanonymous's avatar
comfyanonymous committed
585
models += [SVD_img2vid]