supported_models.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
8
from . import sd3_clip
9
10

from . import supported_models_base
11
from . import latent_formats
12

13
14
from . import diffusers_convert

15
16
17
18
19
20
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
21
        "use_temporal_attention": False,
22
23
24
25
26
27
28
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

29
    latent_format = latent_formats.SD15
30
31
32
33
34
35
36
37
38
39
40
41
42

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

43
        replace_prefix = {}
44
45
        replace_prefix["cond_stage_model."] = "clip_l."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
46
47
        return state_dict

48
    def process_clip_state_dict_for_saving(self, state_dict):
49
50
51
52
53
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict:
                state_dict.pop(p)

54
55
56
        replace_prefix = {"clip_l.": "cond_stage_model."}
        return utils.state_dict_prefix_replace(state_dict, replace_prefix)

57
    def clip_target(self, state_dict={}):
58
59
60
61
62
63
64
65
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
66
        "use_temporal_attention": False,
67
68
    }

69
70
71
72
73
74
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
        "attn_precision": torch.float32,
    }

75
    latent_format = latent_formats.SD15
76

77
    def model_type(self, state_dict, prefix=""):
78
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
79
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
comfyanonymous's avatar
comfyanonymous committed
80
81
            out = state_dict.get(k, None)
            if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
82
83
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
84
85

    def process_clip_state_dict(self, state_dict):
86
        replace_prefix = {}
87
88
89
        replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
        replace_prefix["cond_stage_model.model."] = "clip_h."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
90
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
91
92
        return state_dict

93
94
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
95
        replace_prefix["clip_h"] = "cond_stage_model.model"
96
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
97
98
99
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

100
    def clip_target(self, state_dict={}):
101
102
103
104
105
106
107
108
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
comfyanonymous's avatar
comfyanonymous committed
109
        "use_temporal_attention": False,
110
111
112
113
114
115
116
117
118
119
120
121
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
comfyanonymous's avatar
comfyanonymous committed
122
        "use_temporal_attention": False,
123
124
125
126
127
128
129
130
131
132
133
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
134
        "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
comfyanonymous's avatar
comfyanonymous committed
135
        "use_temporal_attention": False,
136
137
    }

138
    latent_format = latent_formats.SDXL
139

140
141
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXLRefiner(self, device=device)
142
143
144
145

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}
146
147
        replace_prefix["conditioner.embedders.0.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
148

149
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
150
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
151
152
        return state_dict

153
154
155
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
156
157
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
158
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
159
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
160
161
        return state_dict_g

162
    def clip_target(self, state_dict={}):
163
164
165
166
167
168
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
169
        "transformer_depth": [0, 0, 2, 2, 10, 10],
170
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
171
172
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
173
174
    }

175
    latent_format = latent_formats.SDXL
176

177
    def model_type(self, state_dict, prefix=""):
178
179
180
181
182
183
        if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
            self.latent_format = latent_formats.SDXL_Playground_2_5()
            self.sampling_settings["sigma_data"] = 0.5
            self.sampling_settings["sigma_max"] = 80.0
            self.sampling_settings["sigma_min"] = 0.002
            return model_base.ModelType.EDM
comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188
        elif "edm_vpred.sigma_max" in state_dict:
            self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item())
            if "edm_vpred.sigma_min" in state_dict:
                self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item())
            return model_base.ModelType.V_PREDICTION_EDM
189
        elif "v_pred" in state_dict:
190
191
192
193
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

194
    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
195
196
197
198
        out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
        if self.inpaint_model():
            out.set_inpaint()
        return out
199
200
201
202
203

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

204
205
206
207
        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
        replace_prefix["conditioner.embedders.1.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)

208
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
209
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
210
211
        return state_dict

212
213
214
215
216
217
218
219
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

220
221
222
223
224
225
        state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict_g:
                state_dict_g.pop(p)

226
227
        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
228
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
229
230
        return state_dict_g

231
    def clip_target(self, state_dict={}):
232
233
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)

234
235
236
237
238
239
class SSD1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 4, 4],
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
240
241
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
242
243
    }

comfyanonymous's avatar
comfyanonymous committed
244
245
246
247
248
249
250
251
252
253
class Segmind_Vega(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 1, 1, 2, 2],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class KOALA_700M(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 5],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

class KOALA_1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 6],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
274
275
276
277
278
279
280
281
282
283
284
285
class SVD_img2vid(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 768,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

286
287
288
289
290
291
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
        "attn_precision": torch.float32,
    }

comfyanonymous's avatar
comfyanonymous committed
292
293
294
295
296
297
298
299
300
301
    clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."

    latent_format = latent_formats.SD15

    sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SVD_img2vid(self, device=device)
        return out

302
    def clip_target(self, state_dict={}):
comfyanonymous's avatar
comfyanonymous committed
303
        return None
304

comfyanonymous's avatar
comfyanonymous committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
class SV3D_u(SVD_img2vid):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 256,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

    vae_key_prefix = ["conditioner.embedders.1.encoder."]

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_u(self, device=device)
        return out

class SV3D_p(SV3D_u):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 1280,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }


    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_p(self, device=device)
        return out

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
class Stable_Zero123(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
359
    required_keys = {
        "cc_projection.weight": None,
        "cc_projection.bias": None,
    }

360
361
362
363
364
365
366
367
    clip_vision_prefix = "cond_stage_model.model.visual."

    latent_format = latent_formats.SD15

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
        return out

368
    def clip_target(self, state_dict={}):
369
370
        return None

371
372
373
374
375
376
377
378
379
380
381
382
class SD_X4Upscaler(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 256,
        'in_channels': 7,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
        "use_temporal_attention": False,
    }

    unet_extra_config = {
        "disable_self_attentions": [True, True, True, False],
383
        "num_classes": 1000,
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        "num_heads": 8,
        "num_head_channels": -1,
    }

    latent_format = latent_formats.SD_X4

    sampling_settings = {
        "linear_start": 0.0001,
        "linear_end": 0.02,
    }

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD_X4Upscaler(self, device=device)
        return out
398

comfyanonymous's avatar
comfyanonymous committed
399
400
401
402
403
404
405
406
407
408
class Stable_Cascade_C(supported_models_base.BASE):
    unet_config = {
        "stable_cascade_stage": 'c',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_Prior
    supported_inference_dtypes = [torch.bfloat16, torch.float32]

409
410
411
412
    sampling_settings = {
        "shift": 2.0,
    }

413
414
415
416
    vae_key_prefix = ["vae."]
    text_encoder_key_prefix = ["text_encoder."]
    clip_vision_prefix = "clip_l_vision."

comfyanonymous's avatar
comfyanonymous committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    def process_unet_state_dict(self, state_dict):
        key_list = list(state_dict.keys())
        for y in ["weight", "bias"]:
            suffix = "in_proj_{}".format(y)
            keys = filter(lambda a: a.endswith(suffix), key_list)
            for k_from in keys:
                weights = state_dict.pop(k_from)
                prefix = k_from[:-(len(suffix) + 1)]
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["to_q", "to_k", "to_v"]
                    k_to = "{}.{}.{}".format(prefix, p[x], y)
                    state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
        return state_dict

432
433
434
435
436
437
    def process_clip_state_dict(self, state_dict):
        state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
        if "clip_g.text_projection" in state_dict:
            state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
        return state_dict

comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_C(self, device=device)
        return out

442
    def clip_target(self, state_dict={}):
443
        return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
comfyanonymous's avatar
comfyanonymous committed
444

comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
449
450
451
452
453
454
class Stable_Cascade_B(Stable_Cascade_C):
    unet_config = {
        "stable_cascade_stage": 'b',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_B
    supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]

455
456
457
458
    sampling_settings = {
        "shift": 1.0,
    }

459
460
    clip_vision_prefix = None

comfyanonymous's avatar
comfyanonymous committed
461
462
463
464
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_B(self, device=device)
        return out

comfyanonymous's avatar
comfyanonymous committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
class SD15_instructpix2pix(SD15):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SD15_instructpix2pix(self, device=device)

class SDXL_instructpix2pix(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 10, 10],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
490
        return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
comfyanonymous's avatar
comfyanonymous committed
491

comfyanonymous's avatar
comfyanonymous committed
492
493
494
495
496
497
498
499
500
501
502
503
class SD3(supported_models_base.BASE):
    unet_config = {
        "in_channels": 16,
        "pos_embed_scaling_factor": None,
    }

    sampling_settings = {
        "shift": 3.0,
    }

    unet_extra_config = {}
    latent_format = latent_formats.SD3
504
    text_encoder_key_prefix = ["text_encoders."]
comfyanonymous's avatar
comfyanonymous committed
505
506
507
508
509

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD3(self, device=device)
        return out

510
511
512
513
    def clip_target(self, state_dict={}):
        clip_l = False
        clip_g = False
        t5 = False
514
        dtype_t5 = None
515
516
517
518
519
        pref = self.text_encoder_key_prefix[0]
        if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
            clip_l = True
        if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
            clip_g = True
520
521
        t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
        if t5_key in state_dict:
522
            t5 = True
523
            dtype_t5 = state_dict[t5_key].dtype
524
525
526

        class SD3ClipModel(sd3_clip.SD3ClipModel):
            def __init__(self, device="cpu", dtype=None):
527
                super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype)
528
529

        return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, SD3ClipModel)
comfyanonymous's avatar
comfyanonymous committed
530
531
532


models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3]
comfyanonymous's avatar
comfyanonymous committed
533

comfyanonymous's avatar
comfyanonymous committed
534
models += [SVD_img2vid]