supported_models.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip

from . import supported_models_base
10
from . import latent_formats
11

12
13
from . import diffusers_convert

14
15
16
17
18
19
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
20
        "use_temporal_attention": False,
21
22
23
24
25
26
27
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

28
    latent_format = latent_formats.SD15
29
30
31
32
33
34
35
36
37
38
39
40
41

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

42
43
44
        replace_prefix = {}
        replace_prefix["cond_stage_model."] = "cond_stage_model.clip_l."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
45
46
        return state_dict

47
48
49
50
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {"clip_l.": "cond_stage_model."}
        return utils.state_dict_prefix_replace(state_dict, replace_prefix)

51
52
53
54
55
56
57
58
59
    def clip_target(self):
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
60
        "use_temporal_attention": False,
61
62
    }

63
    latent_format = latent_formats.SD15
64

65
    def model_type(self, state_dict, prefix=""):
66
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
67
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
68
69
            out = state_dict[k]
            if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
70
71
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
72
73

    def process_clip_state_dict(self, state_dict):
74
75
76
77
        replace_prefix = {}
        replace_prefix["conditioner.embedders.0.model."] = "cond_stage_model.model." #SD2 in sgm format
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)

78
        state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.clip_h.transformer.text_model.", 24)
79
80
        return state_dict

81
82
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
83
        replace_prefix["clip_h"] = "cond_stage_model.model"
84
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
85
86
87
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

88
89
90
91
92
93
94
95
96
    def clip_target(self):
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
comfyanonymous's avatar
comfyanonymous committed
97
        "use_temporal_attention": False,
98
99
100
101
102
103
104
105
106
107
108
109
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
comfyanonymous's avatar
comfyanonymous committed
110
        "use_temporal_attention": False,
111
112
113
114
115
116
117
118
119
120
121
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
122
        "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
comfyanonymous's avatar
comfyanonymous committed
123
        "use_temporal_attention": False,
124
125
    }

126
    latent_format = latent_formats.SDXL
127

128
129
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXLRefiner(self, device=device)
130
131
132
133
134
135
136

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
137
        keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
138

139
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
140
141
        return state_dict

142
143
144
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
145
146
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
147
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
148
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
149
150
        return state_dict_g

151
152
153
154
155
156
157
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
158
        "transformer_depth": [0, 0, 2, 2, 10, 10],
159
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
160
161
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
162
163
    }

164
    latent_format = latent_formats.SDXL
165

166
167
168
169
170
171
    def model_type(self, state_dict, prefix=""):
        if "v_pred" in state_dict:
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

172
    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
173
174
175
176
        out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
        if self.inpaint_model():
            out.set_inpaint()
        return out
177
178
179
180
181
182
183
184

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
185
        keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection"
186
        keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
187

188
189
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
190
191
        return state_dict

192
193
194
195
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
196
197
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
198
199
200
201
202
203
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
204
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
205
206
        return state_dict_g

207
208
209
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)

210
211
212
213
214
215
class SSD1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 4, 4],
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
216
217
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
218
219
    }

comfyanonymous's avatar
comfyanonymous committed
220
221
222
223
224
225
226
227
228
229
class Segmind_Vega(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 1, 1, 2, 2],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
class SVD_img2vid(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 768,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

    clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."

    latent_format = latent_formats.SD15

    sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SVD_img2vid(self, device=device)
        return out

    def clip_target(self):
        return None
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
class Stable_Zero123(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

    clip_vision_prefix = "cond_stage_model.model.visual."

    latent_format = latent_formats.SD15

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
        return out

    def clip_target(self):
        return None

281
282
283
284
285
286
287
288
289
290
291
292
class SD_X4Upscaler(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 256,
        'in_channels': 7,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
        "use_temporal_attention": False,
    }

    unet_extra_config = {
        "disable_self_attentions": [True, True, True, False],
293
        "num_classes": 1000,
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        "num_heads": 8,
        "num_head_channels": -1,
    }

    latent_format = latent_formats.SD_X4

    sampling_settings = {
        "linear_start": 0.0001,
        "linear_end": 0.02,
    }

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD_X4Upscaler(self, device=device)
        return out
308

309
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, Segmind_Vega, SD_X4Upscaler]
comfyanonymous's avatar
comfyanonymous committed
310
models += [SVD_img2vid]