"test/vscode:/vscode.git/clone" did not exist on "0a9d6a09e1344765d2221670cd01b258a06346ef"
supported_models.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
8
from . import sd3_clip
9
from . import sa_t5
10
11

from . import supported_models_base
12
from . import latent_formats
13

14
15
from . import diffusers_convert

16
17
18
19
20
21
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
22
        "use_temporal_attention": False,
23
24
25
26
27
28
29
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

30
    latent_format = latent_formats.SD15
31
32
33
34
35
36
37
38
39
40
41
42
43

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

44
        replace_prefix = {}
45
46
        replace_prefix["cond_stage_model."] = "clip_l."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
47
48
        return state_dict

49
    def process_clip_state_dict_for_saving(self, state_dict):
50
51
52
53
54
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict:
                state_dict.pop(p)

55
56
57
        replace_prefix = {"clip_l.": "cond_stage_model."}
        return utils.state_dict_prefix_replace(state_dict, replace_prefix)

58
    def clip_target(self, state_dict={}):
59
60
61
62
63
64
65
66
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
67
        "use_temporal_attention": False,
68
69
    }

70
71
72
73
74
75
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
        "attn_precision": torch.float32,
    }

76
    latent_format = latent_formats.SD15
77

78
    def model_type(self, state_dict, prefix=""):
79
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
80
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
comfyanonymous's avatar
comfyanonymous committed
81
82
            out = state_dict.get(k, None)
            if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
83
84
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
85
86

    def process_clip_state_dict(self, state_dict):
87
        replace_prefix = {}
88
89
90
        replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
        replace_prefix["cond_stage_model.model."] = "clip_h."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
91
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
92
93
        return state_dict

94
95
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
96
        replace_prefix["clip_h"] = "cond_stage_model.model"
97
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
98
99
100
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

101
    def clip_target(self, state_dict={}):
102
103
104
105
106
107
108
109
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
comfyanonymous's avatar
comfyanonymous committed
110
        "use_temporal_attention": False,
111
112
113
114
115
116
117
118
119
120
121
122
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
comfyanonymous's avatar
comfyanonymous committed
123
        "use_temporal_attention": False,
124
125
126
127
128
129
130
131
132
133
134
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
135
        "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
comfyanonymous's avatar
comfyanonymous committed
136
        "use_temporal_attention": False,
137
138
    }

139
    latent_format = latent_formats.SDXL
140

141
142
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXLRefiner(self, device=device)
143
144
145
146

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}
147
148
        replace_prefix["conditioner.embedders.0.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
149

150
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
151
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
152
153
        return state_dict

154
155
156
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
157
158
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
159
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
160
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
161
162
        return state_dict_g

163
    def clip_target(self, state_dict={}):
164
165
166
167
168
169
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
170
        "transformer_depth": [0, 0, 2, 2, 10, 10],
171
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
172
173
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
174
175
    }

176
    latent_format = latent_formats.SDXL
177

178
    def model_type(self, state_dict, prefix=""):
179
180
181
182
183
184
        if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
            self.latent_format = latent_formats.SDXL_Playground_2_5()
            self.sampling_settings["sigma_data"] = 0.5
            self.sampling_settings["sigma_max"] = 80.0
            self.sampling_settings["sigma_min"] = 0.002
            return model_base.ModelType.EDM
comfyanonymous's avatar
comfyanonymous committed
185
186
187
188
189
        elif "edm_vpred.sigma_max" in state_dict:
            self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item())
            if "edm_vpred.sigma_min" in state_dict:
                self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item())
            return model_base.ModelType.V_PREDICTION_EDM
190
        elif "v_pred" in state_dict:
191
192
193
194
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

195
    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
        out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
        if self.inpaint_model():
            out.set_inpaint()
        return out
200
201
202
203
204

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

205
206
207
208
        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
        replace_prefix["conditioner.embedders.1.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)

209
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
210
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
211
212
        return state_dict

213
214
215
216
217
218
219
220
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

221
222
223
224
225
226
        state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict_g:
                state_dict_g.pop(p)

227
228
        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
229
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
230
231
        return state_dict_g

232
    def clip_target(self, state_dict={}):
233
234
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)

235
236
237
238
239
240
class SSD1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 4, 4],
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
241
242
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
243
244
    }

comfyanonymous's avatar
comfyanonymous committed
245
246
247
248
249
250
251
252
253
254
class Segmind_Vega(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 1, 1, 2, 2],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
class KOALA_700M(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 5],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

class KOALA_1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 6],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
275
276
277
278
279
280
281
282
283
284
285
286
class SVD_img2vid(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 768,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

287
288
289
290
291
292
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
        "attn_precision": torch.float32,
    }

comfyanonymous's avatar
comfyanonymous committed
293
294
295
296
297
298
299
300
301
302
    clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."

    latent_format = latent_formats.SD15

    sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SVD_img2vid(self, device=device)
        return out

303
    def clip_target(self, state_dict={}):
comfyanonymous's avatar
comfyanonymous committed
304
        return None
305

comfyanonymous's avatar
comfyanonymous committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
class SV3D_u(SVD_img2vid):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 256,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

    vae_key_prefix = ["conditioner.embedders.1.encoder."]

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_u(self, device=device)
        return out

class SV3D_p(SV3D_u):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 1280,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }


    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_p(self, device=device)
        return out

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
class Stable_Zero123(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

comfyanonymous's avatar
comfyanonymous committed
356
357
358
359
360
    required_keys = {
        "cc_projection.weight": None,
        "cc_projection.bias": None,
    }

361
362
363
364
365
366
367
368
    clip_vision_prefix = "cond_stage_model.model.visual."

    latent_format = latent_formats.SD15

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
        return out

369
    def clip_target(self, state_dict={}):
370
371
        return None

372
373
374
375
376
377
378
379
380
381
382
383
class SD_X4Upscaler(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 256,
        'in_channels': 7,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
        "use_temporal_attention": False,
    }

    unet_extra_config = {
        "disable_self_attentions": [True, True, True, False],
384
        "num_classes": 1000,
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        "num_heads": 8,
        "num_head_channels": -1,
    }

    latent_format = latent_formats.SD_X4

    sampling_settings = {
        "linear_start": 0.0001,
        "linear_end": 0.02,
    }

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD_X4Upscaler(self, device=device)
        return out
399

comfyanonymous's avatar
comfyanonymous committed
400
401
402
403
404
405
406
407
408
409
class Stable_Cascade_C(supported_models_base.BASE):
    unet_config = {
        "stable_cascade_stage": 'c',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_Prior
    supported_inference_dtypes = [torch.bfloat16, torch.float32]

410
411
412
413
    sampling_settings = {
        "shift": 2.0,
    }

414
415
416
417
    vae_key_prefix = ["vae."]
    text_encoder_key_prefix = ["text_encoder."]
    clip_vision_prefix = "clip_l_vision."

comfyanonymous's avatar
comfyanonymous committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    def process_unet_state_dict(self, state_dict):
        key_list = list(state_dict.keys())
        for y in ["weight", "bias"]:
            suffix = "in_proj_{}".format(y)
            keys = filter(lambda a: a.endswith(suffix), key_list)
            for k_from in keys:
                weights = state_dict.pop(k_from)
                prefix = k_from[:-(len(suffix) + 1)]
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["to_q", "to_k", "to_v"]
                    k_to = "{}.{}.{}".format(prefix, p[x], y)
                    state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
        return state_dict

433
434
435
436
437
438
    def process_clip_state_dict(self, state_dict):
        state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
        if "clip_g.text_projection" in state_dict:
            state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
        return state_dict

comfyanonymous's avatar
comfyanonymous committed
439
440
441
442
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_C(self, device=device)
        return out

443
    def clip_target(self, state_dict={}):
444
        return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
comfyanonymous's avatar
comfyanonymous committed
445

comfyanonymous's avatar
comfyanonymous committed
446
447
448
449
450
451
452
453
454
455
class Stable_Cascade_B(Stable_Cascade_C):
    unet_config = {
        "stable_cascade_stage": 'b',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_B
    supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]

456
457
458
459
    sampling_settings = {
        "shift": 1.0,
    }

460
461
    clip_vision_prefix = None

comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_B(self, device=device)
        return out

comfyanonymous's avatar
comfyanonymous committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
class SD15_instructpix2pix(SD15):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SD15_instructpix2pix(self, device=device)

class SDXL_instructpix2pix(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 10, 10],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
491
        return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
comfyanonymous's avatar
comfyanonymous committed
492

comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
498
499
500
501
502
503
504
class SD3(supported_models_base.BASE):
    unet_config = {
        "in_channels": 16,
        "pos_embed_scaling_factor": None,
    }

    sampling_settings = {
        "shift": 3.0,
    }

    unet_extra_config = {}
    latent_format = latent_formats.SD3
505
    text_encoder_key_prefix = ["text_encoders."]
comfyanonymous's avatar
comfyanonymous committed
506
507
508
509
510

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD3(self, device=device)
        return out

511
512
513
514
    def clip_target(self, state_dict={}):
        clip_l = False
        clip_g = False
        t5 = False
515
        dtype_t5 = None
516
517
518
519
520
        pref = self.text_encoder_key_prefix[0]
        if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
            clip_l = True
        if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
            clip_g = True
521
522
        t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
        if t5_key in state_dict:
523
            t5 = True
524
            dtype_t5 = state_dict[t5_key].dtype
525

526
        return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5))
comfyanonymous's avatar
comfyanonymous committed
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
class StableAudio(supported_models_base.BASE):
    unet_config = {
        "audio_model": "dit1.0",
    }

    sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03}

    unet_extra_config = {}
    latent_format = latent_formats.StableAudio1

    text_encoder_key_prefix = ["text_encoders."]
    vae_key_prefix = ["pretransform.model."]

    def get_model(self, state_dict, prefix="", device=None):
        seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True)
        seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True)
        return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device)


    def process_unet_state_dict(self, state_dict):
        for k in list(state_dict.keys()):
            if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero
                state_dict.pop(k)
        return state_dict

    def clip_target(self, state_dict={}):
        return supported_models_base.ClipTarget(sa_t5.SAT5Tokenizer, sa_t5.SAT5Model)

comfyanonymous's avatar
comfyanonymous committed
556

557
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio]
comfyanonymous's avatar
comfyanonymous committed
558

comfyanonymous's avatar
comfyanonymous committed
559
models += [SVD_img2vid]