"docs/en/advanced_guides/datasets/scannet.md" did not exist on "da4c3af9db571eee5b3fc7cd059eaf4764a698ca"
supported_models.py 7.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip

from . import supported_models_base
10
from . import latent_formats
11

12
13
from . import diffusers_convert

14
15
16
17
18
19
20
21
22
23
24
25
26
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

27
    latent_format = latent_formats.SD15
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

        return state_dict

    def clip_target(self):
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
    }

54
    latent_format = latent_formats.SD15
55

56
    def model_type(self, state_dict, prefix=""):
57
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
58
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
59
60
            out = state_dict[k]
            if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
61
62
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
63
64
65
66
67

    def process_clip_state_dict(self, state_dict):
        state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
        return state_dict

68
69
70
71
72
73
74
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        replace_prefix[""] = "cond_stage_model.model."
        state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def clip_target(self):
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
        "transformer_depth": [0, 4, 4, 0],
    }

110
    latent_format = latent_formats.SDXL
111

112
113
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXLRefiner(self, device=device)
114
115
116
117
118
119
120

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
121
        keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
122
123
124
125

        state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
        return state_dict

126
127
128
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
129
130
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
131
132
133
134
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
        state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
        return state_dict_g

135
136
137
138
139
140
141
142
143
144
145
146
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 10],
        "context_dim": 2048,
        "adm_in_channels": 2816
    }

147
    latent_format = latent_formats.SDXL
148

149
150
151
152
153
154
    def model_type(self, state_dict, prefix=""):
        if "v_pred" in state_dict:
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

155
156
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
157
158
159
160
161
162
163
164

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
165
        keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
166
167
168
169
170

        state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
        return state_dict

171
172
173
174
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
175
176
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
177
178
179
180
181
182
183
184
185
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
        state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
        return state_dict_g

186
187
188
189
190
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)


models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]