supported_models.py 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip

from . import supported_models_base
10
from . import latent_formats
11

12
13
from . import diffusers_convert

14
15
16
17
18
19
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
20
        "use_temporal_attention": False,
21
22
23
24
25
26
27
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

28
    latent_format = latent_formats.SD15
29
30
31
32
33
34
35
36
37
38
39
40
41

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

42
        replace_prefix = {}
43
44
        replace_prefix["cond_stage_model."] = "clip_l."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
45
46
        return state_dict

47
    def process_clip_state_dict_for_saving(self, state_dict):
48
49
50
51
52
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict:
                state_dict.pop(p)

53
54
55
        replace_prefix = {"clip_l.": "cond_stage_model."}
        return utils.state_dict_prefix_replace(state_dict, replace_prefix)

56
57
58
59
60
61
62
63
64
    def clip_target(self):
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
comfyanonymous's avatar
comfyanonymous committed
65
        "use_temporal_attention": False,
66
67
    }

68
    latent_format = latent_formats.SD15
69

70
    def model_type(self, state_dict, prefix=""):
71
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
72
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
comfyanonymous's avatar
comfyanonymous committed
73
74
            out = state_dict.get(k, None)
            if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
75
76
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
77
78

    def process_clip_state_dict(self, state_dict):
79
        replace_prefix = {}
80
81
82
        replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
        replace_prefix["cond_stage_model.model."] = "clip_h."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
83
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
84
85
        return state_dict

86
87
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
88
        replace_prefix["clip_h"] = "cond_stage_model.model"
89
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
90
91
92
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

93
94
95
96
97
98
99
100
101
    def clip_target(self):
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
comfyanonymous's avatar
comfyanonymous committed
102
        "use_temporal_attention": False,
103
104
105
106
107
108
109
110
111
112
113
114
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
comfyanonymous's avatar
comfyanonymous committed
115
        "use_temporal_attention": False,
116
117
118
119
120
121
122
123
124
125
126
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
127
        "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
comfyanonymous's avatar
comfyanonymous committed
128
        "use_temporal_attention": False,
129
130
    }

131
    latent_format = latent_formats.SDXL
132

133
134
    def get_model(self, state_dict, prefix="", device=None):
        return model_base.SDXLRefiner(self, device=device)
135
136
137
138

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}
139
140
        replace_prefix["conditioner.embedders.0.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
141

142
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
143
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
144
145
        return state_dict

146
147
148
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
149
150
        if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
            state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
151
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
152
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
153
154
        return state_dict_g

155
156
157
158
159
160
161
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
162
        "transformer_depth": [0, 0, 2, 2, 10, 10],
163
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
164
165
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
166
167
    }

168
    latent_format = latent_formats.SDXL
169

170
    def model_type(self, state_dict, prefix=""):
171
172
173
174
175
176
177
        if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
            self.latent_format = latent_formats.SDXL_Playground_2_5()
            self.sampling_settings["sigma_data"] = 0.5
            self.sampling_settings["sigma_max"] = 80.0
            self.sampling_settings["sigma_min"] = 0.002
            return model_base.ModelType.EDM
        elif "v_pred" in state_dict:
178
179
180
181
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

182
    def get_model(self, state_dict, prefix="", device=None):
comfyanonymous's avatar
comfyanonymous committed
183
184
185
186
        out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
        if self.inpaint_model():
            out.set_inpaint()
        return out
187
188
189
190
191

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

192
193
194
195
        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
        replace_prefix["conditioner.embedders.1.model."] = "clip_g."
        state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)

196
        state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
197
        state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
198
199
        return state_dict

200
201
202
203
204
205
206
207
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

208
209
210
211
212
213
        state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
        pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
        for p in pop_keys:
            if p in state_dict_g:
                state_dict_g.pop(p)

214
215
        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
216
        state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
217
218
        return state_dict_g

219
220
221
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)

222
223
224
225
226
227
class SSD1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 4, 4],
        "context_dim": 2048,
comfyanonymous's avatar
comfyanonymous committed
228
229
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
230
231
    }

comfyanonymous's avatar
comfyanonymous committed
232
233
234
235
236
237
238
239
240
241
class Segmind_Vega(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 1, 1, 2, 2],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class KOALA_700M(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 5],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

class KOALA_1B(SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 6],
        "context_dim": 2048,
        "adm_in_channels": 2816,
        "use_temporal_attention": False,
    }

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
class SVD_img2vid(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 768,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

    clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."

    latent_format = latent_formats.SD15

    sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SVD_img2vid(self, device=device)
        return out

    def clip_target(self):
        return None
286

comfyanonymous's avatar
comfyanonymous committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
class SV3D_u(SVD_img2vid):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 256,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }

    vae_key_prefix = ["conditioner.embedders.1.encoder."]

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_u(self, device=device)
        return out

class SV3D_p(SV3D_u):
    unet_config = {
        "model_channels": 320,
        "in_channels": 8,
        "use_linear_in_transformer": True,
        "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
        "context_dim": 1024,
        "adm_in_channels": 1280,
        "use_temporal_attention": True,
        "use_temporal_resblock": True
    }


    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SV3D_p(self, device=device)
        return out

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
class Stable_Zero123(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
        "use_temporal_attention": False,
        "in_channels": 8,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

    clip_vision_prefix = "cond_stage_model.model.visual."

    latent_format = latent_formats.SD15

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
        return out

    def clip_target(self):
        return None

348
349
350
351
352
353
354
355
356
357
358
359
class SD_X4Upscaler(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 256,
        'in_channels': 7,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
        "use_temporal_attention": False,
    }

    unet_extra_config = {
        "disable_self_attentions": [True, True, True, False],
360
        "num_classes": 1000,
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        "num_heads": 8,
        "num_head_channels": -1,
    }

    latent_format = latent_formats.SD_X4

    sampling_settings = {
        "linear_start": 0.0001,
        "linear_end": 0.02,
    }

    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.SD_X4Upscaler(self, device=device)
        return out
375

comfyanonymous's avatar
comfyanonymous committed
376
377
378
379
380
381
382
383
384
385
class Stable_Cascade_C(supported_models_base.BASE):
    unet_config = {
        "stable_cascade_stage": 'c',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_Prior
    supported_inference_dtypes = [torch.bfloat16, torch.float32]

386
387
388
389
    sampling_settings = {
        "shift": 2.0,
    }

390
391
392
393
    vae_key_prefix = ["vae."]
    text_encoder_key_prefix = ["text_encoder."]
    clip_vision_prefix = "clip_l_vision."

comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def process_unet_state_dict(self, state_dict):
        key_list = list(state_dict.keys())
        for y in ["weight", "bias"]:
            suffix = "in_proj_{}".format(y)
            keys = filter(lambda a: a.endswith(suffix), key_list)
            for k_from in keys:
                weights = state_dict.pop(k_from)
                prefix = k_from[:-(len(suffix) + 1)]
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["to_q", "to_k", "to_v"]
                    k_to = "{}.{}.{}".format(prefix, p[x], y)
                    state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
        return state_dict

409
410
411
412
413
414
    def process_clip_state_dict(self, state_dict):
        state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
        if "clip_g.text_projection" in state_dict:
            state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
        return state_dict

comfyanonymous's avatar
comfyanonymous committed
415
416
417
418
419
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_C(self, device=device)
        return out

    def clip_target(self):
420
        return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
comfyanonymous's avatar
comfyanonymous committed
421

comfyanonymous's avatar
comfyanonymous committed
422
423
424
425
426
427
428
429
430
431
class Stable_Cascade_B(Stable_Cascade_C):
    unet_config = {
        "stable_cascade_stage": 'b',
    }

    unet_extra_config = {}

    latent_format = latent_formats.SC_B
    supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]

432
433
434
435
    sampling_settings = {
        "shift": 1.0,
    }

436
437
    clip_vision_prefix = None

comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
    def get_model(self, state_dict, prefix="", device=None):
        out = model_base.StableCascade_B(self, device=device)
        return out

comfyanonymous's avatar
comfyanonymous committed
442

comfyanonymous's avatar
comfyanonymous committed
443
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p]
comfyanonymous's avatar
comfyanonymous committed
444
models += [SVD_img2vid]