sd1_clip.py 21.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
from . import model_management
9
10
import comfy.clip_model
import json
11
import logging
Mario Klingemann's avatar
Mario Klingemann committed
12
import numbers
comfyanonymous's avatar
comfyanonymous committed
13

14
15
16
17
18
19
20
21
22
23
24
25
def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

comfyanonymous's avatar
comfyanonymous committed
26
27
class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
28
29
30
        to_encode = list()
        max_token_len = 0
        has_weights = False
comfyanonymous's avatar
comfyanonymous committed
31
        for x in token_weight_pairs:
32
            tokens = list(map(lambda a: a[0], x))
33
34
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
35
36
            to_encode.append(tokens)

37
38
39
40
        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

41
42
43
        o = self.encode(to_encode)
        out, pooled = o[:2]

44
        if pooled is not None:
45
            first_pooled = pooled[0:1].to(model_management.intermediate_device())
46
        else:
47
            first_pooled = pooled
48
49

        output = []
50
        for k in range(0, sections):
51
            z = out[k:k+1]
52
53
54
55
56
57
58
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
59
60
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
61
        if (len(output) == 0):
62
63
64
            r = (out[-1:].to(model_management.intermediate_device()), first_pooled)
        else:
            r = (torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled)
65
66
67
68
69
70
71
72
73
74

        if len(o) > 2:
            extra = {}
            for k in o[2]:
                v = o[2][k]
                if k == "attention_mask":
                    v = v[:sections].flatten().unsqueeze(dim=0).to(model_management.intermediate_device())
                extra[k] = v

            r = r + (extra,)
75
        return r
comfyanonymous's avatar
comfyanonymous committed
76

77
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
comfyanonymous's avatar
comfyanonymous committed
78
79
80
81
82
83
84
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
85
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
86
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
87
                 return_projected_pooled=True, return_attention_masks=False):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
88
89
        super().__init__()
        assert layer in self.LAYERS
90
91
92
93
94
95
96

        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")

        with open(textmodel_json_config) as f:
            config = json.load(f)

97
98
        self.operations = comfy.ops.manual_cast
        self.transformer = model_class(config, dtype, device, self.operations)
99
        self.num_layers = self.transformer.num_layers
100

comfyanonymous's avatar
comfyanonymous committed
101
102
103
104
105
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
106
        self.special_tokens = special_tokens
107

108
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
109
        self.enable_attention_masks = enable_attention_masks
110
        self.zero_out_masked = zero_out_masked
111

112
        self.layer_norm_hidden_state = layer_norm_hidden_state
113
        self.return_projected_pooled = return_projected_pooled
114
        self.return_attention_masks = return_attention_masks
115

comfyanonymous's avatar
comfyanonymous committed
116
117
        if layer == "hidden":
            assert layer_idx is not None
118
            assert abs(layer_idx) < self.num_layers
119
120
            self.set_clip_options({"layer": layer_idx})
        self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
comfyanonymous's avatar
comfyanonymous committed
121
122
123
124
125
126
127

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

128
129
130
131
    def set_clip_options(self, options):
        layer_idx = options.get("layer", self.layer_idx)
        self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
        if layer_idx is None or abs(layer_idx) > self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
132
133
134
135
136
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

137
138
139
140
    def reset_clip_options(self):
        self.layer = self.options_default[0]
        self.layer_idx = self.options_default[1]
        self.return_projected_pooled = self.options_default[2]
141

142
143
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
144
        next_new_token = token_dict_size = current_embeds.weight.shape[0]
145
146
147
148
149
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
Mario Klingemann's avatar
Mario Klingemann committed
150
151
                if isinstance(y, numbers.Integral):
                    tokens_temp += [int(y)]
152
                else:
153
154
155
156
157
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
158
                        logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
159
            while len(tokens_temp) < len(x):
160
                tokens_temp += [self.special_tokens["pad"]]
161
162
            out_tokens += [tokens_temp]

163
        n = token_dict_size
164
        if len(embedding_weights) > 0:
165
            new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
166
            new_embedding.weight[:token_dict_size] = current_embeds.weight
167
168
169
170
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            self.transformer.set_input_embeddings(new_embedding)
171
172
173
174
175
176

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
177

comfyanonymous's avatar
comfyanonymous committed
178
    def forward(self, tokens):
179
        backup_embeds = self.transformer.get_input_embeddings()
180
        device = backup_embeds.weight.device
181
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
182
183
        tokens = torch.LongTensor(tokens).to(device)

184
        attention_mask = None
185
        if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
186
            attention_mask = torch.zeros_like(tokens)
187
            end_token = self.special_tokens.get("end", -1)
188
189
190
            for x in range(attention_mask.shape[0]):
                for y in range(attention_mask.shape[1]):
                    attention_mask[x, y] = 1
191
                    if tokens[x, y] == end_token:
192
193
                        break

194
195
196
197
        attention_mask_model = None
        if self.enable_attention_masks:
            attention_mask_model = attention_mask

198
        outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
199
200
201
        self.transformer.set_input_embeddings(backup_embeds)

        if self.layer == "last":
202
            z = outputs[0].float()
comfyanonymous's avatar
comfyanonymous committed
203
        else:
204
205
            z = outputs[1].float()

206
        if self.zero_out_masked:
207
            z *= attention_mask.unsqueeze(-1).float()
208

209
210
211
212
213
214
        pooled_output = None
        if len(outputs) >= 3:
            if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
                pooled_output = outputs[3].float()
            elif outputs[2] is not None:
                pooled_output = outputs[2].float()
215

216
        extra = {}
217
        if self.return_attention_masks:
218
219
220
221
            extra["attention_mask"] = attention_mask

        if len(extra) > 0:
            return z, pooled_output, extra
222

223
        return z, pooled_output
comfyanonymous's avatar
comfyanonymous committed
224
225
226
227

    def encode(self, tokens):
        return self(tokens)

228
229
230
    def load_sd(self, sd):
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

308
309
310
311
312
313
314
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
315

316
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
317
318
319
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

320
321
    embedding_directory = expand_directory_list(embedding_directory)

322
323
    valid_file = None
    for embed_dir in embedding_directory:
324
325
326
327
328
329
330
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
331
332
333
334
335
336
337
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
338
        else:
339
340
341
342
343
344
345
346
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
347

348
349
    embed_out = None

350
351
352
353
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
354
        else:
355
            if 'weights_only' in torch.load.__code__.co_varnames:
356
357
358
359
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
360
361
362
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
363
        logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
364
365
        return None

366
367
368
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
369
370
371
372
373
374
375
376
377
378
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
379
380
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
381
382
        else:
            values = embed.values()
383
            embed_out = next(iter(values))
384
    return embed_out
385

386
class SDTokenizer:
387
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
comfyanonymous's avatar
comfyanonymous committed
388
389
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
390
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
comfyanonymous's avatar
comfyanonymous committed
391
        self.max_length = max_length
392
        self.min_length = min_length
393

comfyanonymous's avatar
comfyanonymous committed
394
        empty = self.tokenizer('')["input_ids"]
395
396
397
398
399
400
401
402
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
403
404
405
406
407
408
409
410

        if pad_token is not None:
            self.pad_token = pad_token
        elif pad_with_end:
            self.pad_token = self.end_token
        else:
            self.pad_token = 0

comfyanonymous's avatar
comfyanonymous committed
411
        self.pad_with_end = pad_with_end
412
413
        self.pad_to_max_length = pad_to_max_length

comfyanonymous's avatar
comfyanonymous committed
414
415
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
416
417
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
418
        self.embedding_identifier = "embedding:"
419
        self.embedding_size = embedding_size
420
        self.embedding_key = embedding_key
421

422
    def _try_get_embedding(self, embedding_name:str):
423
424
425
426
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
427
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
428
429
430
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
431
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
432
433
434
435
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


436
    def tokenize_with_weights(self, text:str, return_word_ids=False):
437
438
439
440
441
442
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
comfyanonymous's avatar
comfyanonymous committed
443
444
445
446

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

447
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
448
        tokens = []
449
450
451
452
453
454
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
455
456
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
457
                    if embed is None:
458
                        logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
459
                    else:
460
                        if len(embed.shape) == 1:
461
                            tokens.append([(embed, weight)])
462
                        else:
463
464
465
466
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
467
                    else:
468
469
                        continue
                #parse word
470
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
471

472
473
        #reshape token array to CLIP input size
        batched_tokens = []
474
475
476
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
477
478
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
479
480
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
481

482
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
483
484
485
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
486
487
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
488
                        batch.append((self.end_token, 1.0, 0))
489
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
490
                    #add end token and pad
491
                    else:
BlenderNeko's avatar
BlenderNeko committed
492
                        batch.append((self.end_token, 1.0, 0))
493
                        if self.pad_to_max_length:
494
                            batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
BlenderNeko's avatar
BlenderNeko committed
495
                    #start new batch
496
497
498
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
499
                    batched_tokens.append(batch)
500
                else:
501
502
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
503

504
        #fill last batch
505
506
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
507
            batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
508
        if self.min_length is not None and len(batch) < self.min_length:
509
            batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
comfyanonymous's avatar
comfyanonymous committed
510

511
512
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
513

514
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
515
516
517
518


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
519

520
521
    def state_dict(self):
        return {}
522
523

class SD1Tokenizer:
524
    def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer):
525
526
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
527
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
528
529
530
531
532
533
534
535
536

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)

537
538
    def state_dict(self):
        return {}
539
540

class SD1ClipModel(torch.nn.Module):
541
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, name=None, **kwargs):
542
        super().__init__()
543
544
545
546
547
548
549
550

        if name is not None:
            self.clip_name = name
            self.clip = "{}".format(self.clip_name)
        else:
            self.clip_name = clip_name
            self.clip = "clip_{}".format(self.clip_name)

551
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
552

553
554
555
556
        self.dtypes = set()
        if dtype is not None:
            self.dtypes.add(dtype)

557
558
    def set_clip_options(self, options):
        getattr(self, self.clip).set_clip_options(options)
559

560
561
    def reset_clip_options(self):
        getattr(self, self.clip).reset_clip_options()
562
563
564

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
565
566
        out = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out
567
568
569

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)