sd1_clip.py 21.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
from . import model_management
9
10
import comfy.clip_model
import json
11
import logging
Mario Klingemann's avatar
Mario Klingemann committed
12
import numbers
comfyanonymous's avatar
comfyanonymous committed
13

14
15
16
17
18
19
20
21
22
23
24
25
def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

comfyanonymous's avatar
comfyanonymous committed
26
27
class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
28
29
30
        to_encode = list()
        max_token_len = 0
        has_weights = False
comfyanonymous's avatar
comfyanonymous committed
31
        for x in token_weight_pairs:
32
            tokens = list(map(lambda a: a[0], x))
33
34
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
35
36
            to_encode.append(tokens)

37
38
39
40
        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

41
42
43
        o = self.encode(to_encode)
        out, pooled = o[:2]

44
        if pooled is not None:
45
            first_pooled = pooled[0:1].to(model_management.intermediate_device())
46
        else:
47
            first_pooled = pooled
48
49

        output = []
50
        for k in range(0, sections):
51
            z = out[k:k+1]
52
53
54
55
56
57
58
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
59
60
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
61
        if (len(output) == 0):
62
63
64
            r = (out[-1:].to(model_management.intermediate_device()), first_pooled)
        else:
            r = (torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled)
65
66
67
68
69
70
71
72
73
74

        if len(o) > 2:
            extra = {}
            for k in o[2]:
                v = o[2][k]
                if k == "attention_mask":
                    v = v[:sections].flatten().unsqueeze(dim=0).to(model_management.intermediate_device())
                extra[k] = v

            r = r + (extra,)
75
        return r
comfyanonymous's avatar
comfyanonymous committed
76

77
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
comfyanonymous's avatar
comfyanonymous committed
78
79
80
81
82
83
84
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
85
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
86
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
87
                 return_projected_pooled=True, return_attention_masks=False):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
88
89
        super().__init__()
        assert layer in self.LAYERS
90
91
92
93
94
95
96

        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")

        with open(textmodel_json_config) as f:
            config = json.load(f)

97
        self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast)
98
        self.num_layers = self.transformer.num_layers
99

comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
105
        self.special_tokens = special_tokens
106

107
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
108
        self.enable_attention_masks = enable_attention_masks
109
        self.zero_out_masked = zero_out_masked
110

111
        self.layer_norm_hidden_state = layer_norm_hidden_state
112
        self.return_projected_pooled = return_projected_pooled
113
        self.return_attention_masks = return_attention_masks
114

comfyanonymous's avatar
comfyanonymous committed
115
116
        if layer == "hidden":
            assert layer_idx is not None
117
            assert abs(layer_idx) < self.num_layers
118
119
            self.set_clip_options({"layer": layer_idx})
        self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
126

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

127
128
129
130
    def set_clip_options(self, options):
        layer_idx = options.get("layer", self.layer_idx)
        self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
        if layer_idx is None or abs(layer_idx) > self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
131
132
133
134
135
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

136
137
138
139
    def reset_clip_options(self):
        self.layer = self.options_default[0]
        self.layer_idx = self.options_default[1]
        self.return_projected_pooled = self.options_default[2]
140

141
142
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
143
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
144
145
146
147
148
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
Mario Klingemann's avatar
Mario Klingemann committed
149
                if isinstance(y, numbers.Integral):
150
151
                    if y == token_dict_size: #EOS token
                        y = -1
Mario Klingemann's avatar
Mario Klingemann committed
152
                    tokens_temp += [int(y)]
153
                else:
154
155
156
157
158
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
159
                        logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
160
            while len(tokens_temp) < len(x):
161
                tokens_temp += [self.special_tokens["pad"]]
162
163
            out_tokens += [tokens_temp]

164
        n = token_dict_size
165
        if len(embedding_weights) > 0:
166
167
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
168
169
170
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
171
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
172
            self.transformer.set_input_embeddings(new_embedding)
173
174
175
176
177
178

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
179

comfyanonymous's avatar
comfyanonymous committed
180
    def forward(self, tokens):
181
        backup_embeds = self.transformer.get_input_embeddings()
182
        device = backup_embeds.weight.device
183
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
184
185
        tokens = torch.LongTensor(tokens).to(device)

186
        attention_mask = None
187
        if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
188
            attention_mask = torch.zeros_like(tokens)
189
            end_token = self.special_tokens.get("end", -1)
190
191
192
            for x in range(attention_mask.shape[0]):
                for y in range(attention_mask.shape[1]):
                    attention_mask[x, y] = 1
193
                    if tokens[x, y] == end_token:
194
195
                        break

196
197
198
199
200
        attention_mask_model = None
        if self.enable_attention_masks:
            attention_mask_model = attention_mask

        outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
201
202
203
        self.transformer.set_input_embeddings(backup_embeds)

        if self.layer == "last":
204
            z = outputs[0].float()
comfyanonymous's avatar
comfyanonymous committed
205
        else:
206
207
            z = outputs[1].float()

208
        if self.zero_out_masked:
209
            z *= attention_mask.unsqueeze(-1).float()
210

211
212
213
214
215
216
        pooled_output = None
        if len(outputs) >= 3:
            if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
                pooled_output = outputs[3].float()
            elif outputs[2] is not None:
                pooled_output = outputs[2].float()
217

218
        extra = {}
219
        if self.return_attention_masks:
220
221
222
223
            extra["attention_mask"] = attention_mask

        if len(extra) > 0:
            return z, pooled_output, extra
224

225
        return z, pooled_output
comfyanonymous's avatar
comfyanonymous committed
226
227
228
229

    def encode(self, tokens):
        return self(tokens)

230
231
232
    def load_sd(self, sd):
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

310
311
312
313
314
315
316
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
317

318
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
319
320
321
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

322
323
    embedding_directory = expand_directory_list(embedding_directory)

324
325
    valid_file = None
    for embed_dir in embedding_directory:
326
327
328
329
330
331
332
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
333
334
335
336
337
338
339
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
340
        else:
341
342
343
344
345
346
347
348
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
349

350
351
    embed_out = None

352
353
354
355
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
356
        else:
357
            if 'weights_only' in torch.load.__code__.co_varnames:
358
359
360
361
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
362
363
364
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
365
        logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
366
367
        return None

368
369
370
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
371
372
373
374
375
376
377
378
379
380
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
381
382
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
383
384
        else:
            values = embed.values()
385
            embed_out = next(iter(values))
386
    return embed_out
387

388
class SDTokenizer:
389
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
comfyanonymous's avatar
comfyanonymous committed
390
391
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
392
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
comfyanonymous's avatar
comfyanonymous committed
393
        self.max_length = max_length
394
        self.min_length = min_length
395

comfyanonymous's avatar
comfyanonymous committed
396
        empty = self.tokenizer('')["input_ids"]
397
398
399
400
401
402
403
404
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
405
406
407
408
409
410
411
412

        if pad_token is not None:
            self.pad_token = pad_token
        elif pad_with_end:
            self.pad_token = self.end_token
        else:
            self.pad_token = 0

comfyanonymous's avatar
comfyanonymous committed
413
        self.pad_with_end = pad_with_end
414
415
        self.pad_to_max_length = pad_to_max_length

comfyanonymous's avatar
comfyanonymous committed
416
417
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
418
419
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
420
        self.embedding_identifier = "embedding:"
421
        self.embedding_size = embedding_size
422
        self.embedding_key = embedding_key
423

424
    def _try_get_embedding(self, embedding_name:str):
425
426
427
428
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
429
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
430
431
432
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
433
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
434
435
436
437
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


438
    def tokenize_with_weights(self, text:str, return_word_ids=False):
439
440
441
442
443
444
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
comfyanonymous's avatar
comfyanonymous committed
445
446
447
448

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

449
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
450
        tokens = []
451
452
453
454
455
456
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
457
458
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
459
                    if embed is None:
460
                        logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
461
                    else:
462
                        if len(embed.shape) == 1:
463
                            tokens.append([(embed, weight)])
464
                        else:
465
466
467
468
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
469
                    else:
470
471
                        continue
                #parse word
472
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
473

474
475
        #reshape token array to CLIP input size
        batched_tokens = []
476
477
478
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
479
480
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
481
482
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
483

484
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
485
486
487
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
488
489
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
490
                        batch.append((self.end_token, 1.0, 0))
491
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
492
                    #add end token and pad
493
                    else:
BlenderNeko's avatar
BlenderNeko committed
494
                        batch.append((self.end_token, 1.0, 0))
495
                        if self.pad_to_max_length:
496
                            batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
BlenderNeko's avatar
BlenderNeko committed
497
                    #start new batch
498
499
500
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
501
                    batched_tokens.append(batch)
502
                else:
503
504
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
505

506
        #fill last batch
507
508
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
509
            batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
510
        if self.min_length is not None and len(batch) < self.min_length:
511
            batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
comfyanonymous's avatar
comfyanonymous committed
512

513
514
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
515

516
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
517
518
519
520


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
521

522
523
    def state_dict(self):
        return {}
524
525

class SD1Tokenizer:
526
    def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer):
527
528
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
529
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
530
531
532
533
534
535
536
537
538

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)

539
540
    def state_dict(self):
        return {}
541
542

class SD1ClipModel(torch.nn.Module):
543
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, name=None, **kwargs):
544
        super().__init__()
545
546
547
548
549
550
551
552

        if name is not None:
            self.clip_name = name
            self.clip = "{}".format(self.clip_name)
        else:
            self.clip_name = clip_name
            self.clip = "clip_{}".format(self.clip_name)

553
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
554

555
556
557
558
        self.dtypes = set()
        if dtype is not None:
            self.dtypes.add(dtype)

559
560
    def set_clip_options(self, options):
        getattr(self, self.clip).set_clip_options(options)
561

562
563
    def reset_clip_options(self):
        getattr(self, self.clip).reset_clip_options()
564
565
566

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
567
568
        out = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out
569
570
571

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)