sd1_clip.py 19.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
from . import model_management
9
10
import comfy.clip_model
import json
comfyanonymous's avatar
comfyanonymous committed
11

12
13
14
15
16
17
18
19
20
21
22
23
def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

comfyanonymous's avatar
comfyanonymous committed
24
25
class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
26
27
28
        to_encode = list()
        max_token_len = 0
        has_weights = False
comfyanonymous's avatar
comfyanonymous committed
29
        for x in token_weight_pairs:
30
            tokens = list(map(lambda a: a[0], x))
31
32
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
33
34
            to_encode.append(tokens)

35
36
37
38
        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

39
        out, pooled = self.encode(to_encode)
40
        if pooled is not None:
41
            first_pooled = pooled[0:1].to(model_management.intermediate_device())
42
        else:
43
            first_pooled = pooled
44
45

        output = []
46
        for k in range(0, sections):
47
            z = out[k:k+1]
48
49
50
51
52
53
54
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
55
56
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
57
        if (len(output) == 0):
58
59
            return out[-1:].to(model_management.intermediate_device()), first_pooled
        return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled
comfyanonymous's avatar
comfyanonymous committed
60

61
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
comfyanonymous's avatar
comfyanonymous committed
62
63
64
65
66
67
68
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
69
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
70
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
71
72
        super().__init__()
        assert layer in self.LAYERS
73
74
75
76
77
78
79

        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")

        with open(textmodel_json_config) as f:
            config = json.load(f)

80
        self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast)
81
        self.num_layers = self.transformer.num_layers
82

comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
88
        self.special_tokens = special_tokens
89

90
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
91
        self.enable_attention_masks = enable_attention_masks
92

93
        self.layer_norm_hidden_state = layer_norm_hidden_state
comfyanonymous's avatar
comfyanonymous committed
94
95
        if layer == "hidden":
            assert layer_idx is not None
96
            assert abs(layer_idx) < self.num_layers
comfyanonymous's avatar
comfyanonymous committed
97
            self.clip_layer(layer_idx)
98
        self.layer_default = (self.layer, self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
99
100
101
102
103
104
105
106

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
107
        if abs(layer_idx) > self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
112
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

113
114
115
116
    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

117
118
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
119
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
120
121
122
123
124
125
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
126
127
                    if y == token_dict_size: #EOS token
                        y = -1
128
129
                    tokens_temp += [y]
                else:
130
131
132
133
134
135
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
136
            while len(tokens_temp) < len(x):
137
                tokens_temp += [self.special_tokens["pad"]]
138
139
            out_tokens += [tokens_temp]

140
        n = token_dict_size
141
        if len(embedding_weights) > 0:
142
143
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
144
145
146
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
147
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
148
            self.transformer.set_input_embeddings(new_embedding)
149
150
151
152
153
154

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
155

comfyanonymous's avatar
comfyanonymous committed
156
    def forward(self, tokens):
157
        backup_embeds = self.transformer.get_input_embeddings()
158
        device = backup_embeds.weight.device
159
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
160
161
        tokens = torch.LongTensor(tokens).to(device)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        attention_mask = None
        if self.enable_attention_masks:
            attention_mask = torch.zeros_like(tokens)
            max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
            for x in range(attention_mask.shape[0]):
                for y in range(attention_mask.shape[1]):
                    attention_mask[x, y] = 1
                    if tokens[x, y] == max_token:
                        break

        outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
        self.transformer.set_input_embeddings(backup_embeds)

        if self.layer == "last":
            z = outputs[0]
comfyanonymous's avatar
comfyanonymous committed
177
        else:
178
179
180
181
182
183
184
            z = outputs[1]

        if outputs[2] is not None:
            pooled_output = outputs[2].float()
        else:
            pooled_output = None

185
        return z.float(), pooled_output
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189

    def encode(self, tokens):
        return self(tokens)

190
191
192
    def load_sd(self, sd):
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

270
271
272
273
274
275
276
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
277

278
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
279
280
281
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

282
283
    embedding_directory = expand_directory_list(embedding_directory)

284
285
    valid_file = None
    for embed_dir in embedding_directory:
286
287
288
289
290
291
292
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
293
294
295
296
297
298
299
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
300
        else:
301
302
303
304
305
306
307
308
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
309

310
311
    embed_out = None

312
313
314
315
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
316
        else:
317
            if 'weights_only' in torch.load.__code__.co_varnames:
318
319
320
321
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
322
323
324
325
326
327
328
329
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

330
331
332
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
333
334
335
336
337
338
339
340
341
342
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
343
344
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
345
346
        else:
            values = embed.values()
347
            embed_out = next(iter(values))
348
    return embed_out
349

350
class SDTokenizer:
351
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
comfyanonymous's avatar
comfyanonymous committed
352
353
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
354
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
comfyanonymous's avatar
comfyanonymous committed
355
        self.max_length = max_length
356

comfyanonymous's avatar
comfyanonymous committed
357
        empty = self.tokenizer('')["input_ids"]
358
359
360
361
362
363
364
365
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
comfyanonymous's avatar
comfyanonymous committed
366
        self.pad_with_end = pad_with_end
367
368
        self.pad_to_max_length = pad_to_max_length

comfyanonymous's avatar
comfyanonymous committed
369
370
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
371
372
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
373
        self.embedding_identifier = "embedding:"
374
        self.embedding_size = embedding_size
375
        self.embedding_key = embedding_key
376

377
    def _try_get_embedding(self, embedding_name:str):
378
379
380
381
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
382
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
383
384
385
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
386
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
387
388
389
390
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


391
    def tokenize_with_weights(self, text:str, return_word_ids=False):
392
393
394
395
396
397
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
398
399
400
401
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
402
403
404
405

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

406
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
407
        tokens = []
408
409
410
411
412
413
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
414
415
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
416
                    if embed is None:
417
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
418
                    else:
419
                        if len(embed.shape) == 1:
420
                            tokens.append([(embed, weight)])
421
                        else:
422
423
424
425
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
426
                    else:
427
428
                        continue
                #parse word
429
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
430

431
432
        #reshape token array to CLIP input size
        batched_tokens = []
433
434
435
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
436
437
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
438
439
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
440

441
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
442
443
444
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
445
446
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
447
                        batch.append((self.end_token, 1.0, 0))
448
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
449
                    #add end token and pad
450
                    else:
BlenderNeko's avatar
BlenderNeko committed
451
                        batch.append((self.end_token, 1.0, 0))
452
453
                        if self.pad_to_max_length:
                            batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
BlenderNeko's avatar
BlenderNeko committed
454
                    #start new batch
455
456
457
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
458
                    batched_tokens.append(batch)
459
                else:
460
461
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
462

463
        #fill last batch
464
465
466
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
            batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
comfyanonymous's avatar
comfyanonymous committed
467

468
469
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
470

471
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
472
473
474
475


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493


class SD1Tokenizer:
    def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)


class SD1ClipModel(torch.nn.Module):
494
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
495
496
497
        super().__init__()
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
498
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
499
500
501
502
503
504
505
506
507
508
509
510
511
512

    def clip_layer(self, layer_idx):
        getattr(self, self.clip).clip_layer(layer_idx)

    def reset_clip_layer(self):
        getattr(self, self.clip).reset_clip_layer()

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
        out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out, pooled

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)