deepseek_v2.py 98.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
fzyzcjy's avatar
fzyzcjy committed
35
36
37
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
from sglang.srt.eplb.expert_location_dispatch import ExpertLocationDispatchInfo
38
from sglang.srt.layers.activation import SiluAndMul
39
40
41
42
43
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
47
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
48
)
49
from sglang.srt.layers.layernorm import RMSNorm
50
51
52
53
54
55
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
56
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
57
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
58
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
59
from sglang.srt.layers.moe.topk import select_experts
60
from sglang.srt.layers.quantization import deep_gemm_wrapper
61
from sglang.srt.layers.quantization.base_config import QuantizationConfig
62
from sglang.srt.layers.quantization.fp8_kernel import (
63
    is_fp8_fnuz,
64
    per_tensor_quant_mla_fp8,
65
    per_token_group_quant_mla_deep_gemm_masked_fp8,
66
)
HandH1998's avatar
HandH1998 committed
67
from sglang.srt.layers.quantization.fp8_utils import (
68
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
69
    block_quant_to_tensor_quant,
70
    channel_quant_to_tensor_quant,
71
    normalize_e4m3fn_to_e4m3fnuz,
72
    requant_weight_ue8m0_inplace,
HandH1998's avatar
HandH1998 committed
73
)
74
75
76
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
77
from sglang.srt.layers.radix_attention import RadixAttention
78
from sglang.srt.layers.rotary_embedding import get_rope, get_rope_wrapper
79
80
81
82
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
83
from sglang.srt.managers.schedule_batch import global_server_args_dict
84
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
85
from sglang.srt.model_loader.weight_utils import default_weight_loader
86
87
88
89
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
90
91
92
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
93
    LazyValue,
94
    PackWeightMethod,
95
    add_prefix,
96
    bind_or_assign,
97
    cpu_has_amx_support,
98
    get_bool_env_var,
99
    get_device_sm,
100
    get_int_env_var,
101
    is_cpu,
102
103
    is_cuda,
    is_hip,
104
    is_non_idle_and_non_empty,
105
    log_info_on_rank0,
106
)
107

108
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
109
_is_cuda = is_cuda()
110
_is_fp8_fnuz = is_fp8_fnuz()
111
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
112
113
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
114
_device_sm = get_device_sm()
115

Yineng Zhang's avatar
Yineng Zhang committed
116
if _is_cuda:
117
118
119
120
121
122
123
    from sgl_kernel import (
        awq_dequantize,
        bmm_fp8,
        dsv3_fused_a_gemm,
        dsv3_router_gemm,
        merge_state_v2,
    )
124
125
elif _is_cpu and _is_cpu_amx_available:
    pass
Yineng Zhang's avatar
Yineng Zhang committed
126
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
127
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
128

129
130
131
132
133
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

134

135
136
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
137

138
139
140
141
142
143
144
145
146
147
148
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

149
150
151
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

152
153
154
    # Use MLA with fused RoPE kernel for CPU
    MLA_FUSED_ROPE_CPU = auto()

155

Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
158
159
160
161
162
163
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
164
        prefix: str = "",
165
166
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
167
168
    ) -> None:
        super().__init__()
169
170
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
171
        self.gate_up_proj = MergedColumnParallelLinear(
172
173
174
175
176
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
177
178
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
179
180
181
182
183
184
185
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
186
            prefix=add_prefix("down_proj", prefix),
187
188
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
189
190
191
192
193
194
195
196
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

197
198
199
200
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
201
202
203
204
205
206
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
207
class MoEGate(nn.Module):
208
209
210
211
212
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
213
214
215
216
217
218
219
220
221
222
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None
223
224
        if _is_cpu and _is_cpu_amx_available:
            self.quant_method = PackWeightMethod(weight_names=["weight"])
Ke Bao's avatar
Ke Bao committed
225
226

    def forward(self, hidden_states):
227
228
229
230
231
232
233
234
        if getattr(self, "use_intel_amx_backend", False):
            return torch.ops.sgl_kernel.weight_packed_linear(
                hidden_states,
                self.weight,
                None,  # bias
                True,  # is_vnni
            )

235
236
237
238
239
240
241
242
243
244
245
246
        if (
            hidden_states.shape[0] < 4
            and hidden_states.shape[1] == 7168
            and self.weight.shape[0] == 256
            and _device_sm >= 90
        ):
            logits = dsv3_router_gemm(hidden_states, self.weight).to(
                hidden_states.dtype
            )
        else:
            logits = F.linear(hidden_states, self.weight, None)

Ke Bao's avatar
Ke Bao committed
247
248
249
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
250
251
252
253
254
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
255
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
256
        quant_config: Optional[QuantizationConfig] = None,
257
        prefix: str = "",
258
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
259
260
261
262
263
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
264
265
266
267
268
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
269
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
270
        self.layer_id = layer_id
271
        self.alt_stream = alt_stream
272

Liangsheng Yin's avatar
Liangsheng Yin committed
273
274
275
276
277
278
279
280
281
282
283
284
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

285
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
286

287
        self.experts = get_moe_impl_class()(
288
            num_experts=config.n_routed_experts
289
            + self.num_fused_shared_experts
290
            + global_server_args_dict["ep_num_redundant_experts"],
291
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
292
293
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
294
            layer_id=self.layer_id,
295
296
297
298
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
299
            num_fused_shared_experts=self.num_fused_shared_experts,
300
301
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
302
            routed_scaling_factor=self.routed_scaling_factor,
303
304
305
306
307
308
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
309
310
311
312
313
314
315
316
317
            # Additional args for FusedMoE
            **(
                dict(
                    enable_flashinfer_moe=True,
                    enable_ep_moe=global_server_args_dict["enable_ep_moe"],
                )
                if global_server_args_dict["enable_flashinfer_moe"]
                else {}
            ),
318
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
319

320
321
322
        self.shared_experts_is_int8 = False
        self.shared_experts_is_fp8 = False
        self.shared_experts_weight_block_size = None
323
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
324
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
325
            # disable tp for shared experts when enable deepep moe
326
327
328
329
330
331
332
333
334
335
336
337
338
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
AniZpZ's avatar
AniZpZ committed
339
340
341
342
343
344
            is_packed_weight = hasattr(
                self.shared_experts.gate_up_proj.quant_method, "quant_config"
            ) and self.shared_experts.gate_up_proj.quant_method.quant_config.get_name() in {
                "awq",
                "moe_wna16",
            }
345
            self.shared_experts_is_int8 = (
346
347
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.int8
348
349
            )
            self.shared_experts_is_fp8 = (
350
351
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
352
353
354
355
356
357
358
359
360
            )
            if self.shared_experts_is_fp8:
                assert (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                    == self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
                )
                self.shared_experts_weight_block_size = (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                )
361

362
363
        self.top_k = config.num_experts_per_tok

364
        if global_server_args_dict["enable_deepep_moe"]:
365
366
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
367
368
369
370
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
371
372
373
374
375
376
377
378
379
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

380
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
381
382
383
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
384
                num_experts=self.num_experts,
385
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
386
                hidden_size=config.hidden_size,
387
                params_dtype=config.torch_dtype,
388
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
389
                async_finish=True,
390
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
391
392
            )

393
        self._enable_deepep_moe = global_server_args_dict["enable_deepep_moe"]
394

395
396
397
398
399
400
401
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

402
403
404
405
    def forward(
        self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
406
407
408
409
410
411
412
413
414
            DUAL_STREAM_TOKEN_THRESHOLD = 1024
            if (
                self.alt_stream is not None
                and self.num_fused_shared_experts == 0
                and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
            ):
                return self.forward_normal_dual_stream(hidden_states)
            else:
                return self.forward_normal(hidden_states)
415
416
417
        else:
            return self.forward_deepep(hidden_states, forward_batch)

418
    def forward_normal_dual_stream(self, hidden_states: torch.Tensor) -> torch.Tensor:
419
420
421
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)

422
423
424
        current_stream = torch.cuda.current_stream()
        self.alt_stream.wait_stream(current_stream)
        shared_output = self._forward_shared_experts(hidden_states)
425

426
427
428
429
430
431
432
433
434
435
436
437
        with torch.cuda.stream(self.alt_stream):
            final_hidden_states = self.experts(
                hidden_states=hidden_states, router_logits=router_logits
            )
            if not _is_cuda:
                final_hidden_states *= self.routed_scaling_factor
        current_stream.wait_stream(self.alt_stream)
        final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

438
    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
439
440
441
442
443
        if hasattr(self, "shared_experts") and getattr(
            self.shared_experts.gate_up_proj, "use_intel_amx_backend", False
        ):
            return self.forward_cpu(hidden_states)

444
445
446
447
448
449
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
450
451
        if not _is_cuda and not _use_aiter:
            # fused in biased_grouped_topk so we can skip here
452
            final_hidden_states *= self.routed_scaling_factor
453
454
455
456
457
458
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    def forward_cpu(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        fused_experts_out = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )

        assert getattr(
            self.shared_experts.gate_up_proj, "use_intel_amx_backend", False
        ) == getattr(self.shared_experts.down_proj, "use_intel_amx_backend", False)
        # [Note] inplace should be False in fused_experts.
        # If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
        # While hidden_states is still needed in shared_expert.
        final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
            hidden_states,
            self.shared_experts.gate_up_proj.weight,
            self.shared_experts.down_proj.weight,
            fused_experts_out,
            self.routed_scaling_factor,
            True,  # inplace
            self.shared_experts_is_int8,  # use_int8_w8a8
            self.shared_experts_is_fp8,  # use_fp8_w8a16
            (
                self.shared_experts.gate_up_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.gate_up_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w1_scale
            (
                self.shared_experts.down_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.down_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w2_scale
            (
                self.shared_experts_weight_block_size
                if self.shared_experts_is_fp8
                else None
            ),  # block_size
            None,  # a1_scale
            None,  # a2_scale
            True,  # is_vnni
        )
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
529
                num_fused_shared_experts=self.num_fused_shared_experts,
530
531
532
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
533
534
535
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
            forward_mode=forward_mode,
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )

        if shared_output is not None:
581
582
583
584
585
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
586
587
588
589

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
590
        if self.num_fused_shared_experts == 0:
591
592
593
594
            return self.shared_experts(hidden_states)
        else:
            return None

595
    def op_gate(self, state):
596
        if is_non_idle_and_non_empty(
597
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
598
        ):
599
            # router_logits: (num_tokens, n_experts)
600
            state.router_logits = self.gate(state.hidden_states_mlp_input)
601
        else:
602
            state.router_logits = None
603

604
    def op_shared_experts(self, state):
605
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
606
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
607
            state.forward_batch.forward_mode, hidden_states_mlp_input
608
        ):
609
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
610
        else:
611
            state.shared_output = None
612

613
    def op_select_experts(self, state):
614
        router_logits = state.pop("router_logits")
615
616
        hidden_states = state.hidden_states_mlp_input

617
        if router_logits is not None:
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    num_fused_shared_experts=self.num_fused_shared_experts,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
637
638
639
640
641
642
643
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
644

645
    def op_dispatch_a(self, state):
646
        if self.ep_size > 1:
647
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
648
            self.deepep_dispatcher.dispatch_a(
649
                hidden_states=state.hidden_states_mlp_input,
650
651
652
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
653
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
654
            )
655

656
    def op_dispatch_b(self, state):
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                (
                    state.hidden_states_experts_input,
                    state.topk_idx_dispatched,
                    state.topk_weights_dispatched,
                    state.reorder_topk_ids,
                    state.num_recv_tokens_per_expert,
                    state.seg_indptr,
                    state.masked_m,
                    state.expected_m,
                ) = self.deepep_dispatcher.dispatch_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
673
674

    def op_experts(self, state):
675
676
677
678
679
680
681
682
683
684
685
        state.hidden_states_experts_output = self.experts(
            hidden_states=state.pop("hidden_states_experts_input"),
            topk_idx=state.topk_idx_dispatched,
            topk_weights=state.topk_weights_dispatched,
            reorder_topk_ids=state.pop("reorder_topk_ids"),
            seg_indptr=state.pop("seg_indptr"),
            masked_m=state.pop("masked_m"),
            expected_m=state.pop("expected_m"),
            num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
            forward_mode=state.forward_batch.forward_mode,
        )
686

687
    def op_combine_a(self, state):
688
        if self.ep_size > 1:
689
            self.deepep_dispatcher.combine_a(
690
                hidden_states=state.pop("hidden_states_experts_output"),
691
692
693
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
694
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
695
            )
696

697
    def op_combine_b(self, state):
698
699
700
701
        if self.ep_size > 1:
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
            )
702
703

    def op_output(self, state):
704
        final_hidden_states = state.pop("hidden_states_after_combine")
705
706
707
708
709
710
711

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
712

713
        state.hidden_states_mlp_output = final_hidden_states
714

Liangsheng Yin's avatar
Liangsheng Yin committed
715
716
717
718
719
720
721
722
723

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
740
741
        reduce_results: bool = True,
        layer_id: int = None,
742
        prefix: str = "",
743
        alt_stream: Optional[torch.cuda.Stream] = None,
744
745
746
747
748
749
750
751
752
753
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
754
755
756
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

757
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
758
759
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
760
761
762
763
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
764
765
        # For tensor parallel attention
        if self.q_lora_rank is not None:
766
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
767
                self.hidden_size,
768
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
769
770
                bias=False,
                quant_config=quant_config,
771
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
772
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
773
774
775
776
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
777
778
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
779
780
781
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
782
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
783
784
        else:
            self.q_proj = ColumnParallelLinear(
785
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
786
                self.num_heads * self.qk_head_dim,
787
788
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
789
790
791
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
792
            )
793
794
795
796
797
798
799
800
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
821
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
822
823
824
825

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

826
        self.rotary_emb = get_rope_wrapper(
827
828
829
830
831
832
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
833
            device=global_server_args_dict["device"],
834
835
836
837
838
839
840
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
841
842
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
843

844
        self.attn_mqa = RadixAttention(
845
846
847
848
849
850
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
851
            quant_config=quant_config,
852
            prefix=add_prefix("attn_mqa", prefix),
853
854
        )

855
856
857
858
859
860
861
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
862
            quant_config=quant_config,
863
            prefix=add_prefix("attn_mha", prefix),
864
865
        )

866
        self.alt_stream = alt_stream
867
        self.attn_mha.kv_b_proj = None
868

Ke Bao's avatar
Ke Bao committed
869
870
        self.w_kc = None
        self.w_vc = None
871
        self.w_scale = 1.0
872

873
874
875
876
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
877
878
879
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
880
881
882
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
883
        self.attention_backend = global_server_args_dict["attention_backend"]
884
885
886
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
887

888
        # TODO: Design a finer way to determine the threshold
889
890
891
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
892

893
894
895
        # If we have self.fused_qkv_a_proj_with_mqa and we're running on CPU, we will choose the torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight kernel
        # which requires self.w_kc and self.w_vc to be packed.
        # If not, we will use torch.bmm and weight shouldn't be packed in this case
AniZpZ's avatar
AniZpZ committed
896
897
        has_fused_proj = hasattr(self, "fused_qkv_a_proj_with_mqa")
        if has_fused_proj and _is_cpu and _is_cpu_amx_available:
898
899
900
901
            self.quant_method = PackWeightMethod(
                weight_names=["w_kc", "w_vc"], transpose_dims=[[1, 2], [1, 2]]
            )

902
        is_packed_weight = (
AniZpZ's avatar
AniZpZ committed
903
904
905
906
            has_fused_proj
            and hasattr(self.fused_qkv_a_proj_with_mqa.quant_method, "quant_config")
            and self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.get_name()
            in {"awq", "moe_wna16"}
907
        )
908
        self.use_min_latency_fused_a_gemm = (
AniZpZ's avatar
AniZpZ committed
909
            has_fused_proj
910
            and not is_packed_weight
911
912
913
914
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.bfloat16
            and self.fused_qkv_a_proj_with_mqa.weight.shape[0] == 2112
            and self.fused_qkv_a_proj_with_mqa.weight.shape[1] == 7168
            and is_cuda
915
            and _device_sm >= 90
916
917
        )

918
        self.qkv_proj_with_rope_is_int8 = (
AniZpZ's avatar
AniZpZ committed
919
            has_fused_proj
920
            and not is_packed_weight
921
922
923
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.int8
        )
        self.qkv_proj_with_rope_is_fp8 = (
AniZpZ's avatar
AniZpZ committed
924
            has_fused_proj
925
            and not is_packed_weight
926
927
928
929
930
931
932
933
934
935
936
937
938
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.float8_e4m3fn
        )

        self.weight_block_size = None
        if self.qkv_proj_with_rope_is_fp8:
            assert (
                self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                == self.q_b_proj.quant_method.quant_config.weight_block_size
            )
            self.weight_block_size = (
                self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
            )

939
940
941
    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
942
943
944
945
946
947
948
949
950
951
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
952
953
954
955
956
957
                if hasattr(self, "fused_qkv_a_proj_with_mqa") and getattr(
                    self, "use_intel_amx_backend", False
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE_CPU
                else:
                    return AttnForwardMethod.MLA
958

959
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
960
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
961
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
962
963
964
965
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
966
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
967
968
969
            ):
                return AttnForwardMethod.MHA
            else:
970
                return _dispatch_mla_subtype()
971
        elif self.attention_backend == "fa3":
972
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
973
974
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
975
976
977
978
979
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
980
981
982
983
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
984
985
986
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
987
                return _dispatch_mla_subtype()
988
989
990
991
992
993
994
995
996
        elif self.attention_backend == "aiter":
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
997
998
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
999
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1000
1001
1002
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
1003
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
1004
1005
1006
            ):
                return AttnForwardMethod.MHA
            else:
1007
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
1008

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

1022
1023
1024
1025
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1026
        forward_batch: ForwardBatch,
1027
        zero_allocator: BumpAllocator,
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1044
1045
1046
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
1047
1048
1049
1050
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
1051
            return hidden_states, None, forward_batch, None
1052

1053
1054
1055
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
1056
1057
1058
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1059
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
1060
1061
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1062
            )
1063
        elif attn_forward_method == AttnForwardMethod.MLA:
1064
            inner_state = self.forward_absorb_prepare(
1065
1066
1067
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
1068
1069
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1070
            )
1071
1072
1073
1074
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            inner_state = self.forward_absorb_fused_mla_rope_cpu_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1075
        else:
1076
            raise NotImplementedError
1077
        return None, attn_forward_method, forward_batch, inner_state
1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
1094
1095
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            return self.forward_absorb_fused_mla_rope_cpu_core(*inner_state)
1096
1097
1098
1099
        else:
            raise NotImplementedError

    def forward_normal_prepare(
1100
1101
1102
1103
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1104
1105
        zero_allocator: BumpAllocator,
    ):
1106
        if self.q_lora_rank is not None:
1107
1108
1109
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1110
1111
1112
1113
1114
1115
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1116
1117
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
1140
1141
1142
1143

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
1144
1145
1146
1147
1148
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1149
    def forward_absorb_prepare(
1150
1151
1152
1153
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1154
        zero_allocator: BumpAllocator,
1155
    ):
1156
1157
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

1158
        if self.q_lora_rank is not None:
1159
1160
1161
1162
1163
1164
1165
            if hidden_states.shape[0] <= 16 and self.use_min_latency_fused_a_gemm:
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
1166
1167
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1168
1169
1170
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
1171
            if self.alt_stream is not None and get_is_capture_mode():
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
1183
1184
1185
1186
1187
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1188
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1189
1190
1191
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

1192
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
1193
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
1194

1195
1196
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
1197
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
1198
1199
1200
1201
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
1202
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1203
1204
1205
1206
1207
1208
1209
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
1210
1211
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1212
1213
1214
1215
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
1216
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1217
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1218
                q_nope.transpose(0, 1),
1219
                zero_allocator.allocate(1),
1220
1221
1222
1223
1224
1225
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1226
1227

        q_nope_out = q_nope_out.transpose(0, 1)
1228
1229
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

1230
1231
1232
1233
1234
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
1235
1236
1237
1238
1239
        if (
            self.attention_backend == "fa3"
            or self.attention_backend == "flashinfer"
            or self.attention_backend == "cutlass_mla"
        ):
1240
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
1241
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
1242
1243
1244
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1245
            k = torch.cat([k_nope, k_pe], dim=-1)
1246
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1247
1248
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1249
1250
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1251
1252
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1253
1254
1255
1256
1257
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1258
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1259
1260
1261
1262
1263
1264
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
Ke Bao's avatar
Ke Bao committed
1265
1266
1267
            attn_bmm_output = (
                attn_bmm_output[:, :expected_m, :].transpose(0, 1).flatten(1, 2)
            )
1268
1269
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1270
1271
1272
1273
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
Ke Bao's avatar
Ke Bao committed
1274
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1275
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1276
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1277
                attn_output.transpose(0, 1),
1278
                zero_allocator.allocate(1),
1279
1280
1281
1282
1283
1284
1285
1286
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
Ke Bao's avatar
Ke Bao committed
1287
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1288
        else:
Ke Bao's avatar
Ke Bao committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
            attn_bmm_output = torch.empty(
                (attn_output.shape[0], self.num_local_heads * self.v_head_dim),
                dtype=attn_output.dtype,
                device=attn_output.device,
            )
            torch.bmm(
                attn_output.transpose(0, 1),
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        output, _ = self.o_proj(attn_bmm_output)
1302
1303
1304

        return output

1305
    def forward_absorb_fused_mla_rope_prepare(
1306
1307
1308
1309
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1310
        zero_allocator: BumpAllocator,
1311
    ):
1312
1313
1314
1315
1316
1317
1318
1319
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1320
1321
1322
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1323
1324
1325
1326
1327
1328
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1329
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1330
1331
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1332
1333
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1334
1335
1336
1337
1338
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1339
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1340
1341
1342
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    def forward_absorb_fused_mla_rope_cpu_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
        assert self.q_lora_rank is not None and getattr(
            self, "use_intel_amx_backend", False
        ), "forward_absorb_fused_mla_rope_cpu_prepare requires q_lora_rank is not None and use_intel_amx_backend"

        q_input, k_input, v_input = (
            torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight(
                hidden_states,
                self.fused_qkv_a_proj_with_mqa.weight,
                self.q_b_proj.weight,
                self.w_kc,
                self.q_a_layernorm.weight,
                self.kv_a_layernorm.weight,
                positions,
                self.rotary_emb.cos_sin_cache,
                self.kv_a_layernorm.variance_epsilon,
                self.qkv_proj_with_rope_is_int8,
                self.qkv_proj_with_rope_is_fp8,
                (
                    self.fused_qkv_a_proj_with_mqa.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.fused_qkv_a_proj_with_mqa.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                (
                    self.q_b_proj.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.q_b_proj.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                True,  # is_vnni
                self.weight_block_size,
                self.q_lora_rank,
                self.kv_lora_rank,
                self.qk_rope_head_dim,
            )
        )
        return (q_input, k_input, v_input, forward_batch, zero_allocator)

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1517
1518
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1519
1520
1521
1522
1523
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1524
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1525
1526
1527
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1539
1540
1541
1542
        output, _ = self.o_proj(attn_output)

        return output

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
    def forward_absorb_fused_mla_rope_cpu_core(
        self, q_input, k_input, v_input, forward_batch, zero_allocator
    ):
        assert self.q_lora_rank is not None and getattr(
            self, "use_intel_amx_backend", False
        ), "forward_absorb_fused_mla_rope_cpu_core requires q_lora_rank is not None and use_intel_amx_backend"

        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        # [Note] Align shapes of bmm inputs.
        # Shapes of inputs:
        #   q_nope: [M, B, K]
        #   original self.w_kc: [B, K, N]
        #   current self.w_kc (which has been converted in PackWeightMethod): [B, N, K]

        # Shapes of inputs to sgl_kernel.cpu.bmm:
        #   out: [B, M, N]
        #   mat1: [B, M, K]
        #   mat2: [B, N, K]
        B = self.w_vc.size(0)
        N = self.w_vc.size(1)
        M = attn_output.size(0)
        output = torch.empty([M, int(B * N)], dtype=attn_output.dtype)
        attn_bmm_output = output.view([M, B, N]).transpose_(0, 1)
        torch.ops.sgl_kernel.bmm_cpu(
            attn_bmm_output,
            attn_output.transpose(0, 1),
            self.w_vc,
            True,  # is_vnni
            None,  # scale
        )
        attn_output = output
        output, _ = self.o_proj(attn_output)

        return output

1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1632
    def forward_normal_chunked_kv_prepare(
1633
1634
1635
1636
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1637
1638
        zero_allocator: BumpAllocator,
    ):
1639
1640
1641
1642
1643
1644
1645
1646
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1647
1648
1649
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1650
1651
1652
1653
1654
1655
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1656
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1681
1682
1683
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1707

Liangsheng Yin's avatar
Liangsheng Yin committed
1708
1709
1710
1711
1712
1713
1714
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1715
        is_nextn: bool = False,
1716
        prefix: str = "",
1717
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1718
1719
1720
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1721
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1722
1723
1724
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1725
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
1726
        self.speculative_algorithm = global_server_args_dict["speculative_algorithm"]
Lianmin Zheng's avatar
Lianmin Zheng committed
1727
        self.layer_id = layer_id
1728
        self.is_nextn = is_nextn
Baizhou Zhang's avatar
Baizhou Zhang committed
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1747
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1748
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1749

1750
1751
1752
1753
1754
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
1755
            num_layers=1 if is_nextn else config.num_hidden_layers,
1756
1757
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1758
1759
        )

1760
        if self.is_layer_sparse:
1761
1762
1763
1764
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1765
                layer_id=self.layer_id,
1766
                alt_stream=alt_stream,
1767
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1768
        else:
1769
            if enable_moe_dense_fully_dp():
1770
1771
1772
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1773
1774
1775
1776
1777
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1778
                prefix=add_prefix("mlp", prefix),
1779
1780
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1781
            )
1782

Liangsheng Yin's avatar
Liangsheng Yin committed
1783
1784
1785
1786
1787
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1788
1789
1790
1791
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1792
        )
1793
1794
1795
1796
1797
1798

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1799
1800
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1801
1802
1803
1804
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1805
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1806
        residual: Optional[torch.Tensor],
1807
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1808
    ) -> torch.Tensor:
1809

1810
1811
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1812
1813
        )

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

        hidden_states = self.mlp(hidden_states, forward_batch)

        hidden_states, residual = self.layer_communicator.postprocess_layer(
            hidden_states, residual, forward_batch
        )

1831
1832
1833
1834
1835
        if self.enable_dp_attention and self.speculative_algorithm.is_eagle():
            # NOTE: this line resolves the degradation of MTP reception rate for non-zero DP ranks.
            # See discussion here (https://github.com/sgl-project/sglang/pull/6081#discussion_r2147452251).
            hidden_states = hidden_states.clone()

1836
1837
        return hidden_states, residual

1838
1839
1840
1841
1842
1843
1844
1845
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1846
        tbo_subbatch_index: Optional[int] = None,
1847
1848
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1849
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1850
1851
1852
1853
1854
1855
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1856
                tbo_subbatch_index=tbo_subbatch_index,
1857
            )
1858
        )
1859

1860
1861
1862
1863
1864
1865
1866
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1867
        )
1868

1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1881

1882
    def op_comm_postprocess_layer(self, state):
1883
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1884
1885
1886
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1887
        )
1888

1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1907

Liangsheng Yin's avatar
Liangsheng Yin committed
1908
1909
1910
1911
1912
1913
1914
1915

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1916
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1917
1918
1919
1920
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
1921
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
1922
1923
1924
1925

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1926
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1927
        )
1928
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1929
1930
1931
1932
1933
1934
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1935
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1936
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1937
1938
1939
1940
1941
1942
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1943
1944
1945
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1946
1947
1948
1949
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1950
        forward_batch: ForwardBatch,
1951
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1952
    ) -> torch.Tensor:
1953
1954
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
1955
        zero_allocator = BumpAllocator(
1956
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
1957
            dtype=torch.float32,
1958
            device=device,
1959
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1960

1961
1962
1963
1964
1965
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1966
        residual = None
1967
1968
1969
1970
1971
1972
1973

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
1974
1975
1976
1977
1978
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
1979
1980
1981
1982
1983
1984
1985
1986
1987

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
1988
1989
1990
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
1991
1992
1993
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
1994
        if not forward_batch.forward_mode.is_idle():
1995
1996
1997
1998
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1999
2000
2001
2002
2003
2004
2005
2006
2007
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2008
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2009
2010
2011
    ) -> None:
        super().__init__()
        self.config = config
2012
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
2013
        self.quant_config = quant_config
2014
        self.determine_num_fused_shared_experts()
2015
2016
2017
2018
2019
2020
2021
2022
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
2023
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
2024
2025
2026
        )
        self.logits_processor = LogitsProcessor(config)

2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

2039
    def determine_num_fused_shared_experts(
2040
2041
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
2042
2043
2044
2045
2046
2047
2048
2049
        self.num_fused_shared_experts = 0
        if global_server_args_dict["disable_shared_experts_fusion"]:
            return

        # Only Deepseek V3/R1 can use shared experts fusion optimization now.
        disable_reason = None
        if (
            not _is_cuda
2050
            or torch.cuda.get_device_capability("cuda") < (8, 0)
2051
2052
2053
2054
            or self.config.architectures[0] != architecture
            or self.config.n_routed_experts != 256
            or self.config.n_shared_experts != 1
        ):
2055
            disable_reason = "Only Deepseek V3/R1 on NV-platform with capability >= 80 can use shared experts fusion optimization."
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
        elif (
            global_server_args_dict["enable_deepep_moe"]
            or global_server_args_dict["enable_ep_moe"]
        ):
            disable_reason = "Deepseek V3/R1 can not use shared experts fusion optimization when in deepep_moe or ep_moe mode."

        if disable_reason is not None:
            global_server_args_dict["disable_shared_experts_fusion"] = True
            log_info_on_rank0(
                logger,
                f"{disable_reason} Shared experts fusion optimization is disabled.",
            )
            return

        self.num_fused_shared_experts = self.config.n_shared_experts
2071

Mick's avatar
Mick committed
2072
2073
2074
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

2075
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
2076
2077
2078
2079
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2080
        forward_batch: ForwardBatch,
2081
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2082
    ) -> torch.Tensor:
2083
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
2084

2085
2086
2087
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2088

2089
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
2090
2091

        # Perform post-processing after loading weights
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
2102
                        if layer_id < self.config.num_hidden_layers:
2103
2104
                            layer_ids.add(layer_id)

2105
2106
2107
2108
2109
2110
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
2111
2112
2113
2114
2115
2116
2117
2118
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
2119
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
2132
2133
2134
2135
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
2136
2137
2138
2139
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
2140
2141
2142
2143
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
2144
                    weight_block_size = self.quant_config.weight_block_size
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                        and model_dtype == torch.bfloat16
                    ):
2162
2163
2164
2165
                        if (
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
                            and not deep_gemm_wrapper.DEEPGEMM_BLACKWELL
                            and get_bool_env_var("SGL_USE_DEEPGEMM_BMM", "false")
2166
                        ):
2167
2168
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
2169
                        else:
2170
2171
2172
2173
2174
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
                                model_dtype,
2175
                            )
2176
2177
2178
2179
2180
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
2181
                else:
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
2211

Baizhou Zhang's avatar
Baizhou Zhang committed
2212
2213
2214
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
2215
            if not use_deep_gemm_bmm:
2216
2217
2218
2219
2220
2221
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
2222
2223
2224
2225
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
2226
2227
2228
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
2229
2230
                    if _is_hip:
                        self_attn.w_scale *= 2.0
2231
2232
2233
2234
2235
2236
2237
2238
                # TODO: remove this after adding FP8 support in bmm cpu kernel
                if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
                    self_attn.w_kc = (
                        self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
                    )
                    self_attn.w_vc = (
                        self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
                    )
2239
2240
2241
2242
2243
2244
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
2255
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
2256

2257
2258
2259
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
2260
2261
            and hasattr(self.quant_config, "weight_block_size")
            and self.quant_config.weight_block_size is not None
2262
        ):
2263
            self._weight_requant_ue8m0(is_nextn)
2264

2265
    def _weight_requant_ue8m0(self, is_nextn=False):
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
        weight_block_size = self.quant_config.weight_block_size

        moe_layers = list(
            range(
                self.config.first_k_dense_replace,
                self.config.num_hidden_layers,
                self.config.moe_layer_freq,
            )
        )

2276
2277
2278
2279
2280
2281
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers
        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292

            for module in [
                layer.self_attn.fused_qkv_a_proj_with_mqa,
                layer.self_attn.q_b_proj,
                layer.self_attn.kv_b_proj,
                layer.self_attn.o_proj,
            ]:
                requant_weight_ue8m0_inplace(
                    module.weight, module.weight_scale_inv, weight_block_size
                )

2293
            if layer_id in moe_layers or is_nextn:
2294
2295
2296
2297
2298
2299
2300
2301
2302
                shared_experts = getattr(layer.mlp, "shared_experts", None)
                if shared_experts is not None:
                    for module in [
                        shared_experts.gate_up_proj,
                        shared_experts.down_proj,
                    ]:
                        requant_weight_ue8m0_inplace(
                            module.weight, module.weight_scale_inv, weight_block_size
                        )
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

                experts = layer.mlp.experts
                if isinstance(experts, DeepEPMoE):
                    for w in [
                        experts.w13_weight_fp8,
                        experts.w2_weight_fp8,
                    ]:
                        requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
            else:
                mlp = layer.mlp
                assert isinstance(mlp, DeepseekV2MLP)
                for module in [
                    mlp.gate_up_proj,
                    mlp.down_proj,
                ]:
                    requant_weight_ue8m0_inplace(
                        module.weight, module.weight_scale_inv, weight_block_size
                    )

2322
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
2323

2324
2325
2326
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
2327
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
2328
2329
2330
2331
2332
2333
2334
2335
2336
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
2337
2338
2339
2340
2341
2342
2343
2344
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2345
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2346
2347
2348
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2349
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2350
2351
        )

2352
2353
2354
2355
2356
2357
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2358
2359
2360
2361
2362
2363
2364
2365
2366
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

2367
2368
        if self.num_fused_shared_experts > 0:
            assert self.num_fused_shared_experts == 1
2369
            log_info_on_rank0(logger, "Shared experts fusion optimization enabled.")
2370

Liangsheng Yin's avatar
Liangsheng Yin committed
2371
        params_dict = dict(self.named_parameters())
2372
        weight_names = []
Liangsheng Yin's avatar
Liangsheng Yin committed
2373
        for name, loaded_weight in weights:
2374
2375
2376
2377
2378
2379
            if self.num_fused_shared_experts > 0 and "mlp.shared_experts" in name:
                name = name.replace(
                    "mlp.shared_experts",
                    f"mlp.experts.{self.config.n_routed_experts}",
                )

2380
2381
            weight_names.append(name)

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
2444
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
2445
2446
2447
2448
2449
2450
2451
2452
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
2475
                            cat_dim = 0
2476
                            if self.quant_config is not None and (
2477
2478
2479
2480
                                self.quant_config.get_name() == "awq"
                                or self.quant_config.get_name() == "moe_wna16"
                            ):
                                cat_dim = 1
2481
                            fused_weight = torch.cat(
2482
                                [q_a_proj_weight, kv_a_proj_weight], dim=cat_dim
2483
                            )
2484
2485
2486
2487
2488
2489
                            param_name = (
                                name.replace("q_a_proj", "fused_qkv_a_proj_with_mqa")
                                if "q_a_proj" in name
                                else name.replace(
                                    "kv_a_proj_with_mqa", "fused_qkv_a_proj_with_mqa"
                                )
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
2500
2501
2502
2503
                        if (
                            "k_scale" in name or "v_scale" in name
                        ) and name not in params_dict:
                            # modelopt attn kv scale is named differently
2504
2505
2506
                            for scale in ["k_scale", "v_scale"]:
                                if scale in name:
                                    name = name.replace(f"{scale[0]}_proj", "attn_mqa")
2507
2508
2509
2510
2511
2512
2513
                                    break
                        if name not in params_dict:
                            # modelopt ckpt contains not needed weights for MTP module:
                            # model.decoder.self_attn.attn_mqa.v_scale and
                            # model.decoder.self_attn.attn_mqa.k_scale
                            logger.warning(f"{name} not found in params_dict.")
                            continue
2514
2515
2516
2517
2518
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
2519

2520
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2521

2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2533
2534
2535
2536
2537
2538
2539
2540
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2541

HandH1998's avatar
HandH1998 committed
2542
2543
2544
2545
2546
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]