test_utils.py 24.1 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import copy
6
import os
7
import random
8
import subprocess
9
import threading
10
import time
11
from concurrent.futures import ThreadPoolExecutor
Liangsheng Yin's avatar
Liangsheng Yin committed
12
from functools import partial
13
from types import SimpleNamespace
14
from typing import Callable, List, Optional
Liangsheng Yin's avatar
Liangsheng Yin committed
15

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import numpy as np
import requests
18
19
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
20

21
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
22
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
23
24
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
25
from sglang.srt.utils import get_bool_env_var, kill_process_tree
26
from sglang.test.run_eval import run_eval
27
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
28

29
DEFAULT_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/Meta-Llama-3.1-8B-FP8"
30
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
Lianmin Zheng's avatar
Lianmin Zheng committed
31
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
32
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
33
34
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Ke Bao's avatar
Ke Bao committed
35
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
36
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
37
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
38
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
39
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
40
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
41
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
42
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
43
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
44

45
46
47

def is_in_ci():
    """Return whether it is in CI runner."""
48
    return get_bool_env_var("SGLANG_IS_IN_CI")
49
50
51


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
53
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
54
else:
55
56
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
57

Lianmin Zheng's avatar
Lianmin Zheng committed
58

Liangsheng Yin's avatar
Liangsheng Yin committed
59
60
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
76
77
78
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


95
def call_generate_outlines(
96
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
97
):
Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
    assert url is not None

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
117
118
119
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


135
def call_generate_gserver(prompt, temperature, max_tokens, stop=None, url=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
136
    raise NotImplementedError()
137
138


Liangsheng Yin's avatar
Liangsheng Yin committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
218
219
220
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
221
222
223
224
225
226
227
228
229
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
230
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
231
232
233
234
235
236
237
238
239
240
241
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


267
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
268
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
269
270
271
272
273
274
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
275
276
277
278
        choices=[
            "vllm",
            "outlines",
            "lightllm",
279
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
280
281
282
283
284
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
285
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
286
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
291
292
293
294
295
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
296
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
297
298
299
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
300
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
301
302
303
304
305
        }
        args.port = default_port.get(args.backend, None)
    return args


306
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
309
310
311
312
313
314
315
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


316
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
317
318
319
320
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
321
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
322
323
324
325
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
326
327


328
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
329
330
331
332
333
334
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
335
336
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


355
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


378
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
379
380
381
382
383
384
385
386
387
388
389
390
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


391
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
392
393
394
395
396
397
398
399
400
401
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
402
403


404
def popen_launch_server(
405
406
407
408
409
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: tuple = (),
410
    env: Optional[dict] = None,
411
    return_stdout_stderr: Optional[tuple] = None,
412
413
414
415
):
    _, host, port = base_url.split(":")
    host = host[2:]

416
417
418
419
420
421
422
    command = [
        "python3",
        "-m",
        "sglang.launch_server",
        "--model-path",
        model,
        "--host",
423
        host,
424
        "--port",
425
426
        port,
        *other_args,
427
    ]
Chayenne's avatar
Chayenne committed
428

429
430
431
    if api_key:
        command += ["--api-key", api_key]

432
433
434
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
435
436
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
437
438
439
440
441
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
442
443

    start_time = time.time()
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    with requests.Session() as session:
        while time.time() - start_time < timeout:
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
            time.sleep(10)
460
    raise TimeoutError("Server failed to start within the timeout period.")
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


487
def run_unittest_files(files: List[str], timeout_per_file: float):
488
489
490
491
    tic = time.time()
    success = True

    for filename in files:
Mingyi's avatar
Mingyi committed
492
        global process
493

Mingyi's avatar
Mingyi committed
494
495
        def run_one_file(filename):
            filename = os.path.join(os.getcwd(), filename)
496
            print(f"\n\nRun:\npython3 {filename}\n\n", flush=True)
Mingyi's avatar
Mingyi committed
497
498
499
500
501
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
            return process.returncode
502
503

        try:
Mingyi's avatar
Mingyi committed
504
505
506
507
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
            assert ret_code == 0
508
        except TimeoutError:
509
            kill_process_tree(process.pid)
510
511
            time.sleep(5)
            print(
512
513
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
514
            )
Mingyi's avatar
Mingyi committed
515
516
            success = False
            break
517
518

    if success:
519
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
520
    else:
521
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
522
523

    return 0 if success else -1
524
525
526
527


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
528
529


530
531
532
533
534
535
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
536
537
    dataset_path="",
    tokenizer=None,
538
539
540
    random_input_len=4096,
    random_output_len=2048,
    disable_stream=False,
541
    need_warmup=False,
542
):
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
    args = SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
558
        dataset_name=dataset_name,
559
        dataset_path=dataset_path,
560
        model=None,
561
        tokenizer=tokenizer,
562
563
        num_prompts=num_prompts,
        sharegpt_output_len=None,
564
        sharegpt_context_len=None,
565
566
        random_input_len=random_input_len,
        random_output_len=random_output_len,
567
568
569
570
571
572
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        seed=0,
        output_file=None,
        disable_tqdm=False,
573
        disable_stream=disable_stream,
574
        disable_ignore_eos=False,
575
        return_logprob=False,
576
        lora_name=None,
577
        extra_request_body=None,
578
        profile=None,
579
580
581
    )

    try:
582
583
584
585
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
            run_benchmark(warmup_args)
586
587
        res = run_benchmark(args)
    finally:
588
        kill_process_tree(process.pid)
589
590
591

    assert res["completed"] == num_prompts
    return res
592
593


594
def run_bench_one_batch(model, other_args):
595
596
597
    command = [
        "python3",
        "-m",
598
        "sglang.bench_one_batch",
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
        *other_args,
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
621
        kill_process_tree(process.pid)
622
623

    return output_throughput
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657


def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
658
659
660


STDERR_FILENAME = "stderr.txt"
661
STDOUT_FILENAME = "stdout.txt"
662
663


664
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
665
    """Print the output in real time with another thread."""
666
    while not os.path.exists(filename):
667
668
        time.sleep(1)

669
670
    pt = 0
    while pt >= 0:
671
        if pt > 0 and not os.path.exists(filename):
672
            break
673
        lines = open(filename).readlines()
674
675
        for line in lines[pt:]:
            print(line, end="", flush=True)
676
            output_lines.append(line)
677
            pt += 1
678
        time.sleep(0.1)
679
680


681
682
def run_and_check_memory_leak(
    workload_func,
683
    disable_radix_cache,
684
    enable_mixed_chunk,
685
    disable_overlap,
686
    chunked_prefill_size,
687
    assert_has_abort,
688
):
689
690
691
692
693
694
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
695
696
697
698
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
699
700
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

722
723
    # Run the workload
    workload_func(base_url, model)
724
725

    # Clean up everything
726
    kill_process_tree(process.pid)
727
728
    stdout.close()
    stderr.close()
729
730
731
732
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
733
    kill_process_tree(process.pid)
734
735
736
737
738
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
739
    has_abort = False
740
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
741
        if "Uvicorn running" in line:
742
743
744
            has_new_server = True
        if "leak" in line:
            has_leak = True
745
746
        if "Abort" in line:
            has_abort = True
747
748

    assert has_new_server
749
    assert not has_leak
750
751
    if assert_has_abort:
        assert has_abort
752
753


754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
        command, stdout=stdout, stderr=stderr, env=env, text=True
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


781
782
783
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
784
    disable_overlap=False,
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
799
            assert metrics["score"] >= 0.65, f"{metrics=}"
800
801
802
        finally:
            pass

Chayenne's avatar
Chayenne committed
803
804
805
806
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
807
        disable_overlap,
Chayenne's avatar
Chayenne committed
808
        chunked_prefill_size,
809
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
810
    )
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):

    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
843
844
845
846
847
848
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
849
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
850
    )
851
852
853
854
855


def write_github_step_summary(content):
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)