test_utils.py 14.1 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import multiprocessing
6
import os
7
import subprocess
8
import threading
9
import time
10
import unittest
Liangsheng Yin's avatar
Liangsheng Yin committed
11
from functools import partial
12
from typing import Callable, List, Optional
Liangsheng Yin's avatar
Liangsheng Yin committed
13

Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
import numpy as np
import requests
16
17
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
18

Lianmin Zheng's avatar
Lianmin Zheng committed
19
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
20
21
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
22
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
23

Ying Sheng's avatar
Ying Sheng committed
24
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Meta-Llama-3.1-8B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
25
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
26
27
28
29
30
31
32
33
34
35
36

if os.getenv("SGLANG_IS_IN_CI", "false") == "true":
    DEFAULT_URL_FOR_MOE_TEST = "http://127.0.0.1:6157"
    DEFAULT_URL_FOR_ACCURACY_TEST = "http://127.0.0.1:7157"
    DEFAULT_URL_FOR_UNIT_TEST = "http://127.0.0.1:8157"
    DEFAULT_URL_FOR_E2E_TEST = "http://127.0.0.1:9157"
else:
    DEFAULT_URL_FOR_MOE_TEST = "http://127.0.0.1:1157"
    DEFAULT_URL_FOR_ACCURACY_TEST = "http://127.0.0.1:1257"
    DEFAULT_URL_FOR_UNIT_TEST = "http://127.0.0.1:1357"
    DEFAULT_URL_FOR_E2E_TEST = "http://127.0.0.1:1457"
37

Lianmin Zheng's avatar
Lianmin Zheng committed
38

Liangsheng Yin's avatar
Liangsheng Yin committed
39
40
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
56
57
58
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


75
def call_generate_outlines(
Liangsheng Yin's avatar
Liangsheng Yin committed
76
    prompt, temperature, max_tokens, stop=[], regex=None, n=1, url=None
77
):
Liangsheng Yin's avatar
Liangsheng Yin committed
78
79
    assert url is not None

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
97
98
99
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


115
def call_generate_gserver(prompt, temperature, max_tokens, stop=None, url=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
116
    raise NotImplementedError()
117
118


Liangsheng Yin's avatar
Liangsheng Yin committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
198
199
200
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
201
202
203
204
205
206
207
208
209
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
210
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
211
212
213
214
215
216
217
218
219
220
221
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


247
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
248
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
249
250
251
252
253
254
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
255
256
257
258
        choices=[
            "vllm",
            "outlines",
            "lightllm",
259
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
260
261
262
263
264
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
265
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
266
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
267
268
269
270
271
272
273
274
275
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
276
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
279
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
280
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
281
282
283
284
285
        }
        args.port = default_port.get(args.backend, None)
    return args


286
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
291
292
293
294
295
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


296
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
297
298
299
300
301
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_decoding = False
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
302
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
303
304
305
306
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
307
308


309
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
310
311
312
313
314
315
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
316
317
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


336
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


359
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
360
361
362
363
364
365
366
367
368
369
370
371
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


372
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
373
374
375
376
377
378
379
380
381
382
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
383
384


385
def popen_launch_server(
386
387
388
389
390
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: tuple = (),
391
392
    env: Optional[dict] = None,
    return_stdout_stderr: bool = False,
393
394
395
396
):
    _, host, port = base_url.split(":")
    host = host[2:]

397
398
399
400
401
402
403
    command = [
        "python3",
        "-m",
        "sglang.launch_server",
        "--model-path",
        model,
        "--host",
404
        host,
405
        "--port",
406
407
        port,
        *other_args,
408
    ]
409
410
411
    if api_key:
        command += ["--api-key", api_key]

412
413
414
415
416
417
418
419
420
421
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
422
423
424
425

    start_time = time.time()
    while time.time() - start_time < timeout:
        try:
426
427
428
429
430
            headers = {
                "Content-Type": "application/json; charset=utf-8",
                "Authorization": f"Bearer {api_key}",
            }
            response = requests.get(f"{base_url}/v1/models", headers=headers)
431
432
433
434
435
436
            if response.status_code == 200:
                return process
        except requests.RequestException:
            pass
        time.sleep(10)
    raise TimeoutError("Server failed to start within the timeout period.")
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


463
464
465
466
467
def run_one_file(filename, out_queue):
    print(f"\n\nRun {filename}\n\n")
    ret = unittest.main(module=None, argv=["", "-vb"] + [filename])


468
def run_unittest_files(files: List[str], timeout_per_file: float):
469
470
471
472
    tic = time.time()
    success = True

    for filename in files:
473
474
        out_queue = multiprocessing.Queue()
        p = multiprocessing.Process(target=run_one_file, args=(filename, out_queue))
475

476
        def run_process():
477
478
479
480
            p.start()
            p.join()

        try:
481
            run_with_timeout(run_process, timeout=timeout_per_file)
482
483
484
485
486
487
488
            if p.exitcode != 0:
                success = False
                break
        except TimeoutError:
            p.terminate()
            time.sleep(5)
            print(
489
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n"
490
491
492
493
494
495
496
497
498
            )
            return False

    if success:
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s")
    else:
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s")

    return 0 if success else -1
499
500
501
502


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)