Unverified Commit 57d0bd91 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Improve benchmark (#1140)

parent cdc8d607
...@@ -65,10 +65,9 @@ def main(args): ...@@ -65,10 +65,9 @@ def main(args):
def get_one_answer(i): def get_one_answer(i):
answer = call_generate( answer = call_generate(
prompt=few_shot_examples + questions[i], prompt=few_shot_examples + questions[i],
# prompt="System: " + few_shot_examples + "<|separator|>\n\n" + questions[i],
temperature=0, temperature=0,
max_tokens=256, max_tokens=256,
stop="Question", stop=["Question", "Assistant:", "<|separator|>"],
) )
states[i] = answer states[i] = answer
......
"""
Usage:
python3 bench_one.py --input-len 2048 --batch-size 1 2 4 8 16 32 64 128 256 512
"""
import argparse
import json
import time
import numpy as np
import requests
def run_one_batch_size(bs):
url = f"{args.host}:{args.port}"
max_new_tokens = args.max_tokens
if args.input_len:
input_ids = [
[int(x) for x in np.random.randint(0, high=16384, size=(args.input_len,))]
for _ in range(bs)
]
else:
text = [f"{i, }" for i in range(bs)]
tic = time.time()
if args.backend == "srt":
if args.input_len:
inputs = {"input_ids": input_ids}
else:
inputs = {"text": text}
response = requests.post(
url + "/generate",
json={
"sampling_params": {
"temperature": 0,
"max_new_tokens": max_new_tokens,
"ignore_eos": True,
},
**inputs,
},
)
elif args.backend == "lightllm":
response = requests.post(
url + "/generate",
json={
"inputs": text[0],
"parameters": {
"temperature": 0,
"max_new_tokens": max_new_tokens,
"ignore_eos": True,
},
},
)
elif args.backend == "vllm":
if args.input_len:
inputs = {"prompt": input_ids}
else:
inputs = {"prompt": text}
response = requests.post(
url + "/v1/completions",
json={
"model": args.vllm_model_name,
"temperature": 0,
"max_tokens": max_new_tokens,
"ignore_eos": True,
**inputs,
},
)
elif args.backend == "ginfer":
import grpc
from ginfer import sampler_pb2, sampler_pb2_grpc
sampler_channel = grpc.insecure_channel(url.replace("http://", ""))
sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)
tic = time.time()
sample_request = sampler_pb2.SampleTextRequest(
prompt=text[0],
settings=sampler_pb2.SampleSettings(
max_len=max_new_tokens,
rng_seed=0,
temperature=0,
nucleus_p=1,
),
)
stream = sampler.SampleText(sample_request)
response = "".join([x.text for x in stream])
latency = time.time() - tic
if isinstance(response, str):
ret = response
else:
ret = response.json()
print(ret)
input_len = args.input_len if args.input_len else 1
output_len = max_new_tokens
output_throughput = bs * max_new_tokens / latency
overall_throughput = bs * (input_len + output_len) / latency
print(f"latency: {latency:.2f} s")
print(f"output throughput: {output_throughput:.2f} token/s")
print(f"(input + output) throughput: {overall_throughput:.2f} token/s")
with open("results.jsonl", "a") as fout:
res = {
"backend": args.backend,
"input_len": args.input_len,
"output_len": args.max_tokens,
"batch_size": bs,
"latency": latency,
"output_throughput": output_throughput,
"overall_throughput": overall_throughput,
}
fout.write(json.dumps(res) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="http://127.0.0.1")
parser.add_argument("--port", type=int, default=None)
parser.add_argument("--backend", type=str, default="srt")
parser.add_argument("--input-len", type=int, default=None)
parser.add_argument("--batch-size", type=int, nargs="*", default=[1])
parser.add_argument("--max-tokens", type=int, default=256)
parser.add_argument(
"--vllm-model-name", type=str, default="meta-llama/Meta-Llama-3-70B"
)
args = parser.parse_args()
if args.port is None:
if args.backend == "srt":
args.port = 30000
elif args.backend == "vllm":
args.port = 21000
elif args.backend == "lightllm":
args.port = 22000
elif args.backend == "ginfer":
args.port = 9988
else:
raise ValueError(f"Invalid backend: {args.backend}")
for bs in args.batch_size:
run_one_batch_size(bs)
"""Benchmark online serving throughput.
On the server side, run one of the following commands:
(vLLM backend)
python -m vllm.entrypoints.api_server \
--model <your_model> --swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_hf_server.sh <your_model>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
--tokenizer <your_model> --dataset <target_dataset> \
--request-rate <request_rate>
"""
import argparse
import asyncio
import json
import os
import random
import time
from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm_asyncio
from transformers import AutoTokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: AutoTokenizer,
) -> List[Tuple[str, int, int]]:
def load_dataset():
with open(dataset_path, encoding="utf-8") as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Filter out too long sequences.
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
prompt_len = len(prompt_token_ids)
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
return filtered_dataset
try:
from diskcache import Cache
home_dir = os.path.expanduser("~")
cache = Cache(f"{home_dir}/.cache/sglang")
with Cache(cache.directory) as reference:
reference_key = f"{dataset_path}_{tokenizer.name_or_path}"
if reference_key in reference:
print("Reading dataset from cache...")
dataset = reference[reference_key]
else:
dataset = load_dataset()
reference[reference_key] = dataset
except ImportError:
dataset = load_dataset()
# Sample the requests.
sampled_requests = random.sample(dataset, num_requests)
return sampled_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
async def send_request(
backend: str,
api_url: str,
prompt: str,
prompt_len: int,
output_len: int,
best_of: int,
use_beam_search: bool,
) -> None:
request_start_time = time.perf_counter()
headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"prompt": prompt,
"n": 1,
"best_of": best_of,
"use_beam_search": use_beam_search,
"temperature": 0.0 if use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": output_len,
"ignore_eos": True,
"stream": False,
}
elif backend == "tgi":
assert not use_beam_search
params = {
"best_of": best_of,
"max_new_tokens": output_len,
"do_sample": True,
}
pload = {
"inputs": prompt,
"parameters": params,
}
elif backend == "srt":
assert not use_beam_search
params = {
"ignore_eos": True,
"max_new_tokens": output_len,
}
pload = {
"text": prompt,
"sampling_params": params,
}
elif backend == "lightllm":
assert not use_beam_search
params = {
"ignore_eos": True,
"max_new_tokens": output_len,
}
pload = {
"inputs": prompt,
"parameters": params,
}
elif backend == "ginfer":
pass
else:
raise ValueError(f"Unknown backend: {backend}")
if backend != "ginfer":
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(
api_url, headers=headers, json=pload
) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
# Re-send the request if it failed.
if "error" not in output:
break
else:
print(output)
else:
import grpc
from ginfer import sampler_pb2, sampler_pb2_grpc
api_url = api_url.replace("http://", "").replace("/generate", "")
sampler_channel = grpc.aio.insecure_channel(api_url)
sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)
request_end_time = time.perf_counter()
sample_request = sampler_pb2.SampleTextRequest(
prompt=prompt,
settings=sampler_pb2.SampleSettings(
max_len=output_len,
rng_seed=0,
temperature=0,
nucleus_p=1,
),
)
stream = sampler.SampleText(sample_request)
response = "".join([x.text async for x in stream])
request_end_time = time.perf_counter()
request_latency = request_end_time - request_start_time
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
async def benchmark(
backend: str,
api_url: str,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
task = asyncio.create_task(
send_request(
backend,
api_url,
prompt,
prompt_len,
output_len,
best_of,
use_beam_search,
)
)
tasks.append(task)
await tqdm_asyncio.gather(*tasks)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
api_url = f"{args.host}:{args.port}/generate"
if args.tokenizer.endswith(".json") or args.tokenizer.endswith(".model"):
from sglang.srt.hf_transformers_utils import get_tokenizer
tokenizer = get_tokenizer(args.tokenizer)
else:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code
)
if args.dataset:
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
else:
input_lens = np.random.randint(
int(args.input_len * args.range_ratio),
args.input_len + 1,
size=args.num_prompts,
)
output_lens = np.random.randint(
int(args.output_len * args.range_ratio),
args.output_len + 1,
size=args.num_prompts,
)
offsets = np.random.randint(0, tokenizer.vocab_size, size=args.num_prompts)
input_requests = []
for i in range(args.num_prompts):
prompt = tokenizer.decode(
[
(offsets[i] + i + j) % (tokenizer.vocab_size - 129) + 128
for j in range(input_lens[i])
]
)
input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
benchmark_start_time = time.perf_counter()
asyncio.run(
benchmark(
args.backend,
api_url,
input_requests,
args.best_of,
args.use_beam_search,
args.request_rate,
)
)
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
# Compute the statistics.
latencies = [latency for _, _, latency in REQUEST_LATENCY]
avg_latency = np.mean(latencies)
avg_per_token_latency = np.mean(
[
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
]
)
avg_per_output_token_latency = np.mean(
[latency / output_len for _, output_len, latency in REQUEST_LATENCY]
)
decoding_throughput = (
np.sum([output_len for _, output_len, _ in REQUEST_LATENCY]) / benchmark_time
)
# latencies = [round(latency, 2) for _, _, latency in REQUEST_LATENCY]
# print(latencies)
print(f"Total time: {benchmark_time:.2f} s")
print(f"Request throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
print(f"Decoding throughput: {decoding_throughput:.2f} token/s")
print(f"Average latency: {avg_latency:.2f} s")
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
print(f"Average latency per output token: {avg_per_output_token_latency:.2f} s")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput."
)
parser.add_argument(
"--backend",
type=str,
default="srt",
choices=["vllm", "tgi", "srt", "lightllm", "ginfer"],
)
parser.add_argument("--host", type=str, default="http://localhost")
parser.add_argument("--port", type=int, default=30000)
parser.add_argument("--dataset", type=str, help="Path to the dataset.")
parser.add_argument("--input-len", type=int, default=2048)
parser.add_argument("--output-len", type=int, default=256)
parser.add_argument("--range-ratio", type=float, default=1.0)
parser.add_argument(
"--tokenizer",
type=str,
default="NousResearch/Meta-Llama-3-8B",
help="Name or path of the tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and " "returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="trust remote code from huggingface",
)
args = parser.parse_args()
main(args)
# Benchmark Latency and Throughput # Benchmark and Profiling
## SGLang ## Benchmark
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`. Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, consider using `sglang.bench_serving`.
### Launch a server ```
``` python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 ```
``` - Benchmark online serving. Launch a server first and run the following command.
```
### Benchmark one batch python3 -m sglang.bench_serving --backend sglang --num-prompt 10
```
```
python3 bench_one.py ## Profile with Nsight
python3 bench_one.py --batch-size 64
```
### Benchmark online serving with many requests
```
python3 bench_serving.py --backend srt --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256
```
### Benchmark online serving on the ShareGPT dataset
#### Download data
```
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```
#### Run ShareGPT
```
python3 bench_serving.py --backend srt --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10
```
### Profile with Nsight
0. Prerequisite 0. Prerequisite
```bash ```bash
# install nsys # install nsys
...@@ -45,7 +23,7 @@ apt update ...@@ -45,7 +23,7 @@ apt update
apt install nsight-systems-cli apt install nsight-systems-cli
``` ```
1. To profile a single batch, use `nsys profile --cuda-graph-trace=node python3 -m sglang.bench_latency --model meta-llama/Meta-Llama-3-8B --batch-size 64 --input-len 512` 1. To profile a single batch, use `nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node python3 -m sglang.bench_latency --model meta-llama/Meta-Llama-3-8B --batch-size 64 --input-len 512`
2. To profile a server, e.g. 2. To profile a server, e.g.
...@@ -68,38 +46,4 @@ pip install nvtx ...@@ -68,38 +46,4 @@ pip install nvtx
import nvtx import nvtx
with nvtx.annotate("description", color="color"): with nvtx.annotate("description", color="color"):
# some critical code # some critical code
``` ```
\ No newline at end of file
## Other baselines
### vLLM
```
python3 -m vllm.entrypoints.api_server --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel 1 --disable-log-requests --swap-space 16 --port 21000
```
```
# run synthetic
python3 bench_serving.py --backend vllm --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256
```
```
# run ShareGPT
python3 bench_serving.py --backend vllm --port 21000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10
```
```
# run one batch
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3-70B --tensor 8 --disable-log-requests --max-num-seqs 1024 --quantization fp8
python3 bench_one.py --input-len 1024 --batch-size 1 1 2 4 8 16 32 64 128 256 512 768 1024 --port 8000 --backend vllm
```
### LightLLM
```
python -m lightllm.server.api_server --model_dir ~/model_weights/Llama-2-7b-chat-hf --max_total_token_num 15600 --tokenizer_mode auto --port 22000
```
```
python3 bench_serving.py --backend lightllm --port 22000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10
```
...@@ -149,10 +149,12 @@ async def async_request_openai_completions( ...@@ -149,10 +149,12 @@ async def async_request_openai_completions(
"completions" "completions"
), "OpenAI Completions API URL must end with 'completions'." ), "OpenAI Completions API URL must end with 'completions'."
prompt = request_func_input.prompt
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = { payload = {
"model": request_func_input.model, "model": request_func_input.model,
"prompt": request_func_input.prompt, "prompt": prompt,
"temperature": 0.0, "temperature": 0.0,
"best_of": 1, "best_of": 1,
"max_tokens": request_func_input.output_len, "max_tokens": request_func_input.output_len,
...@@ -220,6 +222,13 @@ async def async_request_openai_completions( ...@@ -220,6 +222,13 @@ async def async_request_openai_completions(
return output return output
async def async_request_ginfer(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
raise NotImplementedError()
def get_model(pretrained_model_name_or_path: str) -> str: def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv("SGLANG_USE_MODELSCOPE", "False").lower() == "true": if os.getenv("SGLANG_USE_MODELSCOPE", "False").lower() == "true":
import huggingface_hub.constants import huggingface_hub.constants
...@@ -238,6 +247,13 @@ def get_model(pretrained_model_name_or_path: str) -> str: ...@@ -238,6 +247,13 @@ def get_model(pretrained_model_name_or_path: str) -> str:
def get_tokenizer( def get_tokenizer(
pretrained_model_name_or_path: str, pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path.endswith(
".json"
) or pretrained_model_name_or_path.endswith(".model"):
from sglang.srt.hf_transformers_utils import get_tokenizer
return get_tokenizer(pretrained_model_name_or_path)
if pretrained_model_name_or_path is not None and not os.path.exists( if pretrained_model_name_or_path is not None and not os.path.exists(
pretrained_model_name_or_path pretrained_model_name_or_path
): ):
...@@ -252,6 +268,7 @@ ASYNC_REQUEST_FUNCS = { ...@@ -252,6 +268,7 @@ ASYNC_REQUEST_FUNCS = {
"vllm": async_request_openai_completions, "vllm": async_request_openai_completions,
"lmdeploy": async_request_openai_completions, "lmdeploy": async_request_openai_completions,
"trt": async_request_trt_llm, "trt": async_request_trt_llm,
"ginfer": async_request_ginfer,
} }
...@@ -351,9 +368,9 @@ def sample_sharegpt_requests( ...@@ -351,9 +368,9 @@ def sample_sharegpt_requests(
# Tokenize the prompts and completions. # Tokenize the prompts and completions.
prompt = dataset[i][0] prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids prompt_token_ids = tokenizer.encode(prompt)
completion = dataset[i][1] completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids completion_token_ids = tokenizer.encode(completion)
prompt_len = len(prompt_token_ids) prompt_len = len(prompt_token_ids)
output_len = ( output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len len(completion_token_ids) if fixed_output_len is None else fixed_output_len
...@@ -361,7 +378,9 @@ def sample_sharegpt_requests( ...@@ -361,7 +378,9 @@ def sample_sharegpt_requests(
if prompt_len < 4 or output_len < 4: if prompt_len < 4 or output_len < 4:
# Prune too short sequences. # Prune too short sequences.
continue continue
if prompt_len > 1024 or prompt_len + output_len > 2048: if prompt_len > 1024 or (
prompt_len + output_len > 2048 and fixed_output_len is None
):
# Prune too long sequences. # Prune too long sequences.
continue continue
filtered_dataset.append((prompt, prompt_len, output_len)) filtered_dataset.append((prompt, prompt_len, output_len))
...@@ -422,7 +441,7 @@ def sample_random_requests( ...@@ -422,7 +441,7 @@ def sample_random_requests(
for i in range(num_prompts): for i in range(num_prompts):
# Tokenize the prompts and completions. # Tokenize the prompts and completions.
prompt = dataset[i][0] prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids prompt_token_ids = tokenizer.encode(prompt)
prompt_len = len(prompt_token_ids) prompt_len = len(prompt_token_ids)
if prompt_len > input_lens[i]: if prompt_len > input_lens[i]:
...@@ -488,7 +507,7 @@ def calculate_metrics( ...@@ -488,7 +507,7 @@ def calculate_metrics(
output_len = outputs[i].output_len output_len = outputs[i].output_len
output_lens.append(output_len) output_lens.append(output_len)
retokenized_output_len = len( retokenized_output_len = len(
tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
) )
retokenized_output_lens.append(retokenized_output_len) retokenized_output_lens.append(retokenized_output_len)
total_input += input_requests[i][1] total_input += input_requests[i][1]
...@@ -547,7 +566,6 @@ async def benchmark( ...@@ -547,7 +566,6 @@ async def benchmark(
input_requests: List[Tuple[str, int, int]], input_requests: List[Tuple[str, int, int]],
request_rate: float, request_rate: float,
disable_tqdm: bool, disable_tqdm: bool,
enable_multi: bool,
extra_request_body: Dict[str, Any], extra_request_body: Dict[str, Any],
): ):
if backend in ASYNC_REQUEST_FUNCS: if backend in ASYNC_REQUEST_FUNCS:
...@@ -756,6 +774,7 @@ def run_benchmark(args_: argparse.Namespace): ...@@ -756,6 +774,7 @@ def run_benchmark(args_: argparse.Namespace):
global args global args
args = args_ args = args_
# Set global environments
set_ulimit() set_ulimit()
random.seed(args.seed) random.seed(args.seed)
np.random.seed(args.seed) np.random.seed(args.seed)
...@@ -764,12 +783,14 @@ def run_benchmark(args_: argparse.Namespace): ...@@ -764,12 +783,14 @@ def run_benchmark(args_: argparse.Namespace):
if args.extra_request_body: if args.extra_request_body:
extra_request_body = json.loads(args.extra_request_body) extra_request_body = json.loads(args.extra_request_body)
# Set url
if args.port is None: if args.port is None:
args.port = { args.port = {
"sglang": 30000, "sglang": 30000,
"lmdeploy": 23333, "lmdeploy": 23333,
"vllm": 8000, "vllm": 8000,
"trt": 8000, "trt": 8000,
"ginfer": 9988,
}.get(args.backend, 30000) }.get(args.backend, 30000)
api_url = ( api_url = (
...@@ -792,7 +813,11 @@ def run_benchmark(args_: argparse.Namespace): ...@@ -792,7 +813,11 @@ def run_benchmark(args_: argparse.Namespace):
if args.model is None: if args.model is None:
print("Please provide a model using `--model` when using `trt` backend.") print("Please provide a model using `--model` when using `trt` backend.")
sys.exit(1) sys.exit(1)
elif args.backend == "ginfer":
api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
args.model = args.model or "default"
# Get model name
if args.model is None: if args.model is None:
try: try:
response = requests.get(model_url) response = requests.get(model_url)
...@@ -817,6 +842,7 @@ def run_benchmark(args_: argparse.Namespace): ...@@ -817,6 +842,7 @@ def run_benchmark(args_: argparse.Namespace):
print(f"{args}\n") print(f"{args}\n")
# Read dataset
backend = args.backend backend = args.backend
model_id = args.model model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
...@@ -842,7 +868,21 @@ def run_benchmark(args_: argparse.Namespace): ...@@ -842,7 +868,21 @@ def run_benchmark(args_: argparse.Namespace):
else: else:
raise ValueError(f"Unknown dataset: {args.dataset_name}") raise ValueError(f"Unknown dataset: {args.dataset_name}")
if args.multi: if not args.multi:
return asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
extra_request_body=extra_request_body,
)
)
else:
# Benchmark multiple rps. TODO: use a fixed duration to compute num_prompts
request_rates = parse_request_rate_range(args.request_rate_range) request_rates = parse_request_rate_range(args.request_rate_range)
for rate in request_rates: for rate in request_rates:
...@@ -855,27 +895,11 @@ def run_benchmark(args_: argparse.Namespace): ...@@ -855,27 +895,11 @@ def run_benchmark(args_: argparse.Namespace):
input_requests=input_requests, input_requests=input_requests,
request_rate=rate, request_rate=rate,
disable_tqdm=args.disable_tqdm, disable_tqdm=args.disable_tqdm,
enable_multi=args.multi,
extra_request_body=extra_request_body, extra_request_body=extra_request_body,
) )
) )
else:
return asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
enable_multi=args.multi,
extra_request_body=extra_request_body,
)
)
# to avoid relying on SGLang's components
def set_ulimit(target_soft_limit=65535): def set_ulimit(target_soft_limit=65535):
resource_type = resource.RLIMIT_NOFILE resource_type = resource.RLIMIT_NOFILE
current_soft, current_hard = resource.getrlimit(resource_type) current_soft, current_hard = resource.getrlimit(resource_type)
...@@ -968,7 +992,7 @@ if __name__ == "__main__": ...@@ -968,7 +992,7 @@ if __name__ == "__main__":
help="Number of requests per second. If this is inf, then all the requests are sent at time 0. " help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize the request arrival times. Default is 128.0.", "Otherwise, we use Poisson process to synthesize the request arrival times. Default is 128.0.",
) )
parser.add_argument("--seed", type=int, default=0, help="Default is 0.") parser.add_argument("--seed", type=int, default=1, help="The random seed.")
parser.add_argument( parser.add_argument(
"--multi", "--multi",
action="store_true", action="store_true",
......
...@@ -30,7 +30,17 @@ from transformers import ( ...@@ -30,7 +30,17 @@ from transformers import (
PreTrainedTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast, PreTrainedTokenizerFast,
) )
from vllm.transformers_utils.configs import ChatGLMConfig, DbrxConfig
try:
from vllm.transformers_utils.configs import ChatGLMConfig, DbrxConfig
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
ChatGLMConfig.model_type: ChatGLMConfig,
DbrxConfig.model_type: DbrxConfig,
}
except ImportError:
# We want this file to run without vllm dependency
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {}
from sglang.srt.utils import is_multimodal_model from sglang.srt.utils import is_multimodal_model
......
...@@ -113,30 +113,7 @@ def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None): ...@@ -113,30 +113,7 @@ def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
def call_generate_ginfer(prompt, temperature, max_tokens, stop=None, url=None): def call_generate_ginfer(prompt, temperature, max_tokens, stop=None, url=None):
import grpc raise NotImplementedError()
from ginfer import sampler_pb2, sampler_pb2_grpc
sampler_channel = grpc.insecure_channel(url.replace("http://", ""))
sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)
if stop is None:
stop_strings = None
else:
stop_strings = [stop]
sample_request = sampler_pb2.SampleTextRequest(
prompt=prompt,
settings=sampler_pb2.SampleSettings(
max_len=max_tokens,
rng_seed=0,
temperature=max(temperature, 1e-7),
nucleus_p=1,
stop_strings=stop_strings,
),
)
stream = sampler.SampleText(sample_request)
response = "".join([x.text for x in stream])
return response
def call_generate_guidance( def call_generate_guidance(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment