utils.py 94.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Common utilities."""
15

16
17
from __future__ import annotations

18
import argparse
19
import asyncio
20
import builtins
21
import ctypes
22
import dataclasses
23
import functools
24
import importlib
25
import io
26
import ipaddress
27
import itertools
28
import json
29
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
30
import os
31
import pickle
JieXin Liang's avatar
JieXin Liang committed
32
import platform
Lianmin Zheng's avatar
Lianmin Zheng committed
33
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
34
import re
35
import resource
36
37
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
38
import socket
39
import subprocess
40
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
41
import tempfile
42
import threading
Lianmin Zheng's avatar
Lianmin Zheng committed
43
import time
44
import traceback
45
import uuid
46
import warnings
47
from collections import OrderedDict, defaultdict
48
from contextlib import contextmanager
49
from dataclasses import dataclass
50
from functools import lru_cache
51
from importlib.metadata import PackageNotFoundError, version
52
from importlib.util import find_spec
Lianmin Zheng's avatar
Lianmin Zheng committed
53
from io import BytesIO
54
from json import JSONDecodeError
55
from multiprocessing.reduction import ForkingPickler
56
from pathlib import Path
57
58
59
60
61
62
63
64
65
66
67
68
69
from typing import (
    Any,
    Callable,
    Dict,
    Generic,
    List,
    Optional,
    Protocol,
    Set,
    Tuple,
    TypeVar,
    Union,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
70
71

import numpy as np
72
import psutil
73
import pybase64
Lianmin Zheng's avatar
Lianmin Zheng committed
74
75
import requests
import torch
76
import torch.distributed
77
import torch.distributed as dist
78
import triton
79
import zmq
80
from fastapi.responses import ORJSONResponse
81
from packaging import version as pkg_version
Mick's avatar
Mick committed
82
from PIL import Image
Lianmin Zheng's avatar
Lianmin Zheng committed
83
from starlette.routing import Mount
84
from torch import nn
85
from torch.func import functional_call
86
from torch.library import Library
87
from torch.profiler import ProfilerActivity, profile, record_function
88
from torch.utils._contextlib import _DecoratorContextManager
89
from triton.runtime.cache import FileCacheManager
90
from typing_extensions import Literal
91

92
93
from sglang.srt.metrics.func_timer import enable_func_timer

94
95
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
96
97
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
98

99

100
101
HIP_FP8_E4M3_FNUZ_MAX = 224.0

102

103
# https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
104
105
106
107
def is_hip() -> bool:
    return torch.version.hip is not None


108
109
110
111
112
113
114
115
116
117
118
if is_hip():
    FP8_E4M3_MAX = HIP_FP8_E4M3_FNUZ_MAX
else:
    FP8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

FP8_E4M3_MIN = -FP8_E4M3_MAX

builtins.FP8_E4M3_MAX = FP8_E4M3_MAX
builtins.FP8_E4M3_MIN = FP8_E4M3_MIN


119
def is_cuda():
120
    return torch.cuda.is_available() and torch.version.cuda
121
122
123
124
125
126
127
128
129
130
131
132
133
134


def is_cuda_alike():
    return is_cuda() or is_hip()


def is_hpu() -> bool:
    return hasattr(torch, "hpu") and torch.hpu.is_available()


def is_xpu() -> bool:
    return hasattr(torch, "xpu") and torch.xpu.is_available()


135
136
137
138
def is_npu() -> bool:
    return hasattr(torch, "npu") and torch.npu.is_available()


139
def is_host_cpu_x86() -> bool:
JieXin Liang's avatar
JieXin Liang committed
140
141
142
143
144
145
146
147
    machine = platform.machine().lower()
    return (
        machine in ("x86_64", "amd64", "i386", "i686")
        and hasattr(torch, "cpu")
        and torch.cpu.is_available()
    )


148
149
150
151
def is_cpu() -> bool:
    return os.getenv("SGLANG_USE_CPU_ENGINE", "0") == "1" and is_host_cpu_x86()


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def get_cuda_version():
    if torch.version.cuda:
        return tuple(map(int, torch.version.cuda.split(".")))
    return (0, 0)


def _check(cc_major):
    if not is_cuda():
        return False
    return torch.cuda.get_device_capability()[0] == cc_major and tuple(
        map(int, torch.version.cuda.split(".")[:2])
    ) >= (12, 3)


is_ampere_with_cuda_12_3 = lambda: _check(8)
is_hopper_with_cuda_12_3 = lambda: _check(9)


170
@lru_cache(maxsize=1)
171
172
173
174
175
176
def is_blackwell():
    if not is_cuda():
        return False
    return torch.cuda.get_device_capability()[0] == 10


177
178
179
180
181
182
183
184
185
186
187
188
189
190
@lru_cache(maxsize=1)
def is_sm100_supported(device=None) -> bool:
    return (torch.cuda.get_device_capability(device)[0] == 10) and (
        torch.version.cuda >= "12.8"
    )


@lru_cache(maxsize=1)
def is_sm90_supported(device=None) -> bool:
    return (torch.cuda.get_device_capability(device)[0] == 9) and (
        torch.version.cuda >= "12.3"
    )


191
192
193
194
_warned_bool_env_var_keys = set()


def get_bool_env_var(name: str, default: str = "false") -> bool:
195
    # FIXME: move your environment variable to sglang.environ
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    value = os.getenv(name, default)
    value = value.lower()

    truthy_values = ("true", "1")
    falsy_values = ("false", "0")

    if (value not in truthy_values) and (value not in falsy_values):
        if value not in _warned_bool_env_var_keys:
            logger.warning(
                f"get_bool_env_var({name}) see non-understandable value={value} and treat as false"
            )
        _warned_bool_env_var_keys.add(value)

    return value in truthy_values


def get_int_env_var(name: str, default: int = 0) -> int:
213
    # FIXME: move your environment variable to sglang.environ
214
215
216
217
218
219
220
221
222
223
    value = os.getenv(name)
    if value is None or not value.strip():
        return default
    try:
        return int(value)
    except ValueError:
        return default


def support_triton(backend: str) -> bool:
224
    return backend not in ["torch_native", "intel_amx", "ascend"]
225
226
227
228
229
230
231
232
233
234
235
236


try:
    import sgl_kernel

    is_intel_amx_backend_available = hasattr(
        torch.ops.sgl_kernel, "convert_weight_packed"
    )
except:
    is_intel_amx_backend_available = False


237
238
239
240
241
242
243
244
try:
    # move torch._C._cpu._is_amx_tile_supported() from cpu_has_amx_support
    # to support torch compile
    is_amx_tile_supported = torch._C._cpu._is_amx_tile_supported()
except:
    is_amx_tile_supported = False


245
def cpu_has_amx_support():
246
    return is_amx_tile_supported and is_intel_amx_backend_available
247
248
249
250
251
252


def use_intel_amx_backend(layer):
    return getattr(layer, "use_intel_amx_backend", False)


253
254
255
256
257
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
258
    if not get_bool_env_var("SGLANG_IS_FLASHINFER_AVAILABLE", default="true"):
259
        return False
260
    return importlib.util.find_spec("flashinfer") is not None and is_cuda()
261
262


263
264
265
266
def random_uuid() -> str:
    return str(uuid.uuid4().hex)


267
_ENABLE_TORCH_INFERENCE_MODE = get_bool_env_var(
268
    "SGLANG_ENABLE_TORCH_INFERENCE_MODE", "false"
269
)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323


class DynamicGradMode(_DecoratorContextManager):
    """
    A combination of torch.no_grad and torch.inference_mode,
    with their behavior controlled by an environment variable. Just refer to them.
    """

    @staticmethod
    def set_inference_mode(mode: bool):
        if isinstance(mode, bool):
            global _ENABLE_TORCH_INFERENCE_MODE

            _ENABLE_TORCH_INFERENCE_MODE = mode
        else:
            logger.warning("mode is not a boolean object")

    def __init__(self, mode=True):
        if not torch._jit_internal.is_scripting():
            super().__init__()
        if _ENABLE_TORCH_INFERENCE_MODE:
            self.mode = mode
        else:
            self.prev = False

    def __new__(cls, mode_or_orig_func=True if _ENABLE_TORCH_INFERENCE_MODE else None):
        if mode_or_orig_func is None or isinstance(mode_or_orig_func, bool):
            return super().__new__(cls)
        return cls()(mode_or_orig_func)

    def __enter__(self) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context = torch._C._InferenceMode(self.mode)
            self._inference_mode_context.__enter__()
        else:
            self.prev = torch.is_grad_enabled()
            torch.set_grad_enabled(False)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context.__exit__(exc_type, exc_value, traceback)
        else:
            torch.set_grad_enabled(self.prev)

    def clone(self) -> "DynamicGradMode":
        r"""
        Create a copy of this class
        """
        if _ENABLE_TORCH_INFERENCE_MODE:
            return self.__class__(self.mode)
        else:
            return self.__class__()


Liangsheng Yin's avatar
Liangsheng Yin committed
324
325
326
327
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
328

Liangsheng Yin's avatar
Liangsheng Yin committed
329
330
331
332
333
334
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
335

Liangsheng Yin's avatar
Liangsheng Yin committed
336
337
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
338

Liangsheng Yin's avatar
Liangsheng Yin committed
339
340
341
342
343
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
344

Liangsheng Yin's avatar
Liangsheng Yin committed
345
346
347
348
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
349
350


Liangsheng Yin's avatar
Liangsheng Yin committed
351
352
353
354
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
355
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
356
357
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
358
    time_infos[name].acc_time -= time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
359
360


Liangsheng Yin's avatar
Liangsheng Yin committed
361
362
363
364
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
365
    torch.cuda.synchronize()
366
    time_infos[name].acc_time += time.perf_counter()
Liangsheng Yin's avatar
Liangsheng Yin committed
367
368
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
369
370
371
372
373
374
375


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
376
                start_time = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
379
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
380
                cost_time = (time.perf_counter() - start_time) * 1000
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
383
384
385
386
387
388
389
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


390
391
392
def get_available_gpu_memory(
    device, gpu_id, distributed=False, empty_cache=True, cpu_group=None
):
Lianmin Zheng's avatar
Lianmin Zheng committed
393
394
395
396
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
397
    if device == "cuda":
398
        num_gpus = torch.cuda.device_count()
Zhang, Liangang's avatar
Zhang, Liangang committed
399
400
401
402
403
404
405
406
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

407
408
        if empty_cache:
            torch.cuda.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
409
410
411
412
413
414
415
416
417
418
419
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
420
421
422

        if empty_cache:
            torch.xpu.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
423
424
425
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
426

427
428
429
430
431
432
433
434
435
436
437
438
    elif device == "hpu":
        num_gpus = torch.hpu.device_count()
        assert gpu_id < num_gpus

        if torch.hpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.hpu.current_device()}, ",
                "which may cause useless memory allocation for torch HPU context.",
            )

        free_gpu_memory, total_gpu_memory = torch.hpu.mem_get_info()

439
440
    elif device == "cpu":
        # TODO: rename the variables in the current function to be not GPU specific
441
442
443
        total_free_memory = psutil.virtual_memory().available
        n_numa_node: int = len(get_cpu_ids_by_node())
        free_gpu_memory = round(total_free_memory / n_numa_node, 3)
444
445
446
447
448
449
450
451
452
453
    elif device == "npu":
        num_gpus = torch.npu.device_count()
        assert gpu_id < num_gpus

        if torch.npu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.npu.current_device()}, ",
                "which may cause useless memory allocation for torch NPU context.",
            )
        free_gpu_memory, total_gpu_memory = torch.npu.mem_get_info()
454

Lianmin Zheng's avatar
Lianmin Zheng committed
455
    if distributed:
456
457
458
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32)
        torch.distributed.all_reduce(
            tensor, op=torch.distributed.ReduceOp.MIN, group=cpu_group
Lianmin Zheng's avatar
Lianmin Zheng committed
459
460
461
462
463
464
        )
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


465
466
467
468
469
470
471
472
473
474
475
476
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
477
478
    pp_rank: Optional[int] = None,
    pp_size: Optional[int] = None,
479
    prefix: str = "",
480
    return_tuple: bool = False,
481
    offloader_kwargs: Dict[str, Any] = {},
482
483
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
484
485
486
    # circula imports
    from sglang.srt.distributed import get_pp_indices
    from sglang.srt.layers.utils import PPMissingLayer
487
    from sglang.srt.offloader import get_offloader
488
489
490
491
492
493
494
495
496
497
498

    assert not pp_size or num_hidden_layers >= pp_size
    start_layer, end_layer = (
        get_pp_indices(
            num_hidden_layers,
            pp_rank,
            pp_size,
        )
        if pp_rank is not None and pp_size is not None
        else (0, num_hidden_layers)
    )
499
    modules = torch.nn.ModuleList(
500
        [PPMissingLayer(return_tuple=return_tuple) for _ in range(start_layer)]
501
502
503
504
505
506
507
        + get_offloader().wrap_modules(
            (
                layer_fn(idx=idx, prefix=add_prefix(idx, prefix))
                for idx in range(start_layer, end_layer)
            ),
            **offloader_kwargs,
        )
508
509
510
        + [
            PPMissingLayer(return_tuple=return_tuple)
            for _ in range(end_layer, num_hidden_layers)
511
512
        ]
    )
513
514
515
    if pp_rank is None or pp_size is None:
        return modules
    return modules, start_layer, end_layer
516
517


Lianmin Zheng's avatar
Lianmin Zheng committed
518
def set_random_seed(seed: int) -> None:
519
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
520
    random.seed(seed)
521
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
522
523
524
525
526
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
def find_process_using_port(port: int) -> Optional[psutil.Process]:
    for conn in psutil.net_connections(kind="inet"):
        if conn.laddr.port == port:
            try:
                return psutil.Process(conn.pid)
            except psutil.NoSuchProcess:
                # It could happen by race condition (the proc dies when psutil.Process is called).
                pass

    return None


def wait_port_available(
    port: int, port_name: str, timeout_s: int = 30, raise_exception: bool = True
) -> bool:
    for i in range(timeout_s):
        if is_port_available(port):
            return True

        if i > 10 and i % 5 == 0:
            process = find_process_using_port(port)
            if process is None:
                logger.warning(
                    f"The port {port} is in use, but we could not find the process that uses it."
                )

            pid = process.pid
            error_message = f"{port_name} is used by a process already. {process.name()=}' {process.cmdline()=} {process.status()=} {pid=}"
            logger.info(
                f"port {port} is in use. Waiting for {i} seconds for {port_name} to be available. {error_message}"
            )
        time.sleep(0.1)

    if raise_exception:
        raise ValueError(
            f"{port_name} at {port} is not available in {timeout_s} seconds. {error_message}"
        )
    return False


567
def is_port_available(port):
568
    """Return whether a port is available."""
569
570
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
571
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
572
            s.bind(("", port))
573
            s.listen(1)
574
575
576
            return True
        except socket.error:
            return False
TianYu GUO's avatar
TianYu GUO committed
577
578
        except OverflowError:
            return False
579
580


581
582
583
584
585
586
587
588
589
590
591
592
593
def get_free_port():
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


Yuanhan Zhang's avatar
Yuanhan Zhang committed
594
595
596
597
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
598
    video_bytes = pybase64.b64decode(video_base64, validate=True)
Yuanhan Zhang's avatar
Yuanhan Zhang committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
671
672


673
674
675
def load_audio(
    audio_file: str, sr: Optional[int] = None, mono: bool = True
) -> np.ndarray:
Mick's avatar
Mick committed
676
677
678
679
680
    # Use soundfile here, since librosa use it under the hood,
    # and librosa will not support audio loading in the future
    import soundfile as sf
    from scipy.signal import resample

681
682
683
    if sr is None:
        sr = 16000

Mick's avatar
Mick committed
684
685
686
687
688
    # Load audio data
    if isinstance(audio_file, bytes):
        audio, original_sr = sf.read(BytesIO(audio_file))
    elif audio_file.startswith("data:"):
        audio_file = audio_file.split(",")[1]
689
690
691
        audio, original_sr = sf.read(
            BytesIO(pybase64.b64decode(audio_file, validate=True))
        )
Mick's avatar
Mick committed
692
693
694
695
696
697
    elif audio_file.startswith("http://") or audio_file.startswith("https://"):
        timeout = int(os.getenv("REQUEST_TIMEOUT", "5"))
        response = requests.get(audio_file, stream=True, timeout=timeout)
        audio_file = BytesIO(response.content)
        response.close()
        audio, original_sr = sf.read(audio_file)
Mick's avatar
Mick committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    elif isinstance(audio_file, str):
        audio, original_sr = sf.read(audio_file)
    else:
        raise ValueError(f"Invalid audio format: {audio_file}")

    # Resample audio if the original sample rate is different from the desired sample rate
    if original_sr != sr:
        num_samples = int(len(audio) * float(sr) / original_sr)
        audio = resample(audio, num_samples)

    # Convert to mono if requested and audio is stereo
    if mono and len(audio.shape) > 1:
        audio = np.mean(audio, axis=1)

    return audio

Lianmin Zheng's avatar
Lianmin Zheng committed
714

715
716
717
718
719
720
@dataclass
class ImageData:
    url: str
    detail: Optional[Literal["auto", "low", "high"]] = "auto"


721
def load_image(
722
    image_file: Union[Image.Image, str, ImageData, bytes],
723
) -> tuple[Image.Image, tuple[int, int]]:
724
725
726
    if isinstance(image_file, ImageData):
        image_file = image_file.url

Yuanhan Zhang's avatar
Yuanhan Zhang committed
727
    image = image_size = None
728
729
730
731
    if isinstance(image_file, Image.Image):
        image = image_file
        image_size = (image.width, image.height)
    elif isinstance(image_file, bytes):
732
733
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
734
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
735
736
737
738
739
740
741
        response = requests.get(image_file, stream=True, timeout=timeout)
        try:
            response.raise_for_status()
            image = Image.open(response.raw)
            image.load()  # Force loading to avoid issues after closing the stream
        finally:
            response.close()
Lianmin Zheng's avatar
Lianmin Zheng committed
742
743
744
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
745
        image_file = image_file.split(",")[1]
746
        image = Image.open(BytesIO(pybase64.b64decode(image_file, validate=True)))
747
    elif isinstance(image_file, str):
748
        image = Image.open(BytesIO(pybase64.b64decode(image_file, validate=True)))
749
    else:
750
        raise ValueError(f"Invalid image: {image_file}")
Lianmin Zheng's avatar
Lianmin Zheng committed
751

Yuanhan Zhang's avatar
Yuanhan Zhang committed
752
    return image, image_size
753
754


755
756
def load_video(video_file: Union[str, bytes], use_gpu: bool = True):
    # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
757
758
759
760
761
762
763
764
765
    from decord import VideoReader, cpu, gpu

    try:
        from decord.bridge import decord_bridge

        ctx = gpu(0)
        _ = decord_bridge.get_ctx_device(ctx)
    except Exception:
        ctx = cpu(0)
766
767
768
769
770
771
772
773

    tmp_file = None
    vr = None
    try:
        if isinstance(video_file, bytes):
            tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
            tmp_file.write(video_file)
            tmp_file.close()
774
            vr = VideoReader(tmp_file.name, ctx=ctx)
775
776
777
778
779
780
781
782
783
        elif isinstance(video_file, str):
            if video_file.startswith(("http://", "https://")):
                timeout = int(os.getenv("REQUEST_TIMEOUT", "10"))
                response = requests.get(video_file, stream=True, timeout=timeout)
                response.raise_for_status()
                tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
                for chunk in response.iter_content(chunk_size=8192):
                    tmp_file.write(chunk)
                tmp_file.close()
784
                vr = VideoReader(tmp_file.name, ctx=ctx)
785
786
            elif video_file.startswith("data:"):
                _, encoded = video_file.split(",", 1)
787
                video_bytes = pybase64.b64decode(encoded)
788
789
790
                tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
                tmp_file.write(video_bytes)
                tmp_file.close()
791
                vr = VideoReader(tmp_file.name, ctx=ctx)
792
            elif os.path.isfile(video_file):
793
                vr = VideoReader(video_file, ctx=ctx)
794
            else:
795
                video_bytes = pybase64.b64decode(video_file)
796
797
798
                tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
                tmp_file.write(video_bytes)
                tmp_file.close()
799
                vr = VideoReader(tmp_file.name, ctx=ctx)
800
801
802
803
804
805
806
807
808
809
        else:
            raise ValueError(f"Unsupported video input type: {type(video_file)}")

        return vr

    finally:
        if tmp_file and os.path.exists(tmp_file.name):
            os.unlink(tmp_file.name)


810
def suppress_other_loggers():
811
812
813
814
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

Yineng Zhang's avatar
Yineng Zhang committed
815
816
817
818
    try:
        from vllm.logger import logger as vllm_default_logger
    except ImportError:
        return
819
820

    vllm_default_logger.setLevel(logging.WARN)
821
822
823
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
824
825
826
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
827
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
828
829


830
def assert_pkg_version(pkg: str, min_version: str, message: str):
831
832
833
834
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
835
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
836
                f"is less than the minimum required version {min_version}. " + message
837
838
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
839
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
840
841
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
842
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
843
844


845
846
def kill_process_tree(parent_pid, include_parent: bool = True, skip_pid: int = None):
    """Kill the process and all its child processes."""
847
848
849
850
    # Remove sigchld handler to avoid spammy logs.
    if threading.current_thread() is threading.main_thread():
        signal.signal(signal.SIGCHLD, signal.SIG_DFL)

851
852
853
    if parent_pid is None:
        parent_pid = os.getpid()
        include_parent = False
Lianmin Zheng's avatar
Lianmin Zheng committed
854

855
    try:
856
        itself = psutil.Process(parent_pid)
857
858
859
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
860
    children = itself.children(recursive=True)
861
    for child in children:
862
863
        if child.pid == skip_pid:
            continue
864
865
866
867
868
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

869
    if include_parent:
870
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
871
872
873
874
            if parent_pid == os.getpid():
                itself.kill()
                sys.exit(0)

875
            itself.kill()
876

877
878
879
880
881
            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGQUIT)
        except psutil.NoSuchProcess:
            pass
882
883


884
def monkey_patch_p2p_access_check():
885
    """
886
    Monkey patch the slow p2p access check.
887
888
889
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

890
    import sglang.srt.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
891

892
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
893

Lianmin Zheng's avatar
Lianmin Zheng committed
894
    # Suppress the warnings from this delete function when using sglang.bench_one_batch
895
896
897
    from sglang.srt.distributed.device_communicators.custom_all_reduce import (
        CustomAllreduce,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
898
899
900

    setattr(CustomAllreduce, "__del__", lambda *args, **kwargs: None)

901

902
def monkey_patch_vllm_gguf_config():
Yineng Zhang's avatar
Yineng Zhang committed
903
904
905
906
907
908
909
910
    try:
        from vllm.model_executor.layers.quantization.gguf import (
            GGUFConfig,
            GGUFEmbeddingMethod,
            GGUFLinearMethod,
        )
    except ImportError:
        return
911

Yineng Zhang's avatar
Yineng Zhang committed
912
    from sglang.srt.layers.linear import LinearBase
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding

    def get_quant_method_with_embedding_replaced(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return GGUFLinearMethod(self)
        elif isinstance(layer, VocabParallelEmbedding):
            # patch to own VocabParallelEmbedding
            return GGUFEmbeddingMethod(self)
        return None

    setattr(GGUFConfig, "get_quant_method", get_quant_method_with_embedding_replaced)


928
def set_ulimit(target_soft_limit=65535):
929
    # number of open files
930
931
932
933
934
935
936
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
937
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
938

939
940
941
942
943
944
945
946
947
948
949
950
    # stack size
    resource_type = resource.RLIMIT_STACK
    current_soft, current_hard = resource.getrlimit(resource_type)
    target_soft_limit_stack_size = 1024 * target_soft_limit
    if current_soft < target_soft_limit_stack_size:
        try:
            resource.setrlimit(
                resource_type, (target_soft_limit_stack_size, current_hard)
            )
        except ValueError as e:
            logger.warning(f"Fail to set RLIMIT_STACK: {e}")

951

952
def add_api_key_middleware(app, api_key: str):
953
954
955
956
957
958
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
959
960
        if request.url.path.startswith("/metrics"):
            return await call_next(request)
961
        if request.headers.get("Authorization") != "Bearer " + api_key:
962
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
963
        return await call_next(request)
964
965


966
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
967
    if get_bool_env_var("SGLANG_USE_MODELSCOPE"):
968
969
970
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

971
972
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
973
974
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
975
    return model_path, tokenizer_path
976
977
978


def configure_logger(server_args, prefix: str = ""):
979
980
981
982
983
984
985
986
987
988
    if SGLANG_LOGGING_CONFIG_PATH := os.getenv("SGLANG_LOGGING_CONFIG_PATH"):
        if not os.path.exists(SGLANG_LOGGING_CONFIG_PATH):
            raise Exception(
                "Setting SGLANG_LOGGING_CONFIG_PATH from env with "
                f"{SGLANG_LOGGING_CONFIG_PATH} but it does not exist!"
            )
        with open(SGLANG_LOGGING_CONFIG_PATH, encoding="utf-8") as file:
            custom_config = json.loads(file.read())
        logging.config.dictConfig(custom_config)
        return
989
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
990
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
991
992
993
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
994
        datefmt="%Y-%m-%d %H:%M:%S",
995
996
        force=True,
    )
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
1028
1029
1030


def broadcast_pyobj(
1031
1032
1033
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
1034
    src: int = 0,
1035
    force_cpu_device: bool = True,
1036
):
1037
1038
1039
1040
    """Broadcast inputs from src rank to all other ranks with torch.dist backend.
    The `rank` here refer to the source rank on global process group (regardless
    of dist_group argument).
    """
1041
1042
1043
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not force_cpu_device else "cpu"
    )
1044

1045
    if rank == src:
1046
        if len(data) == 0:
1047
            tensor_size = torch.tensor([0], dtype=torch.long, device=device)
1048
            dist.broadcast(tensor_size, src=src, group=dist_group)
1049
1050
1051
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
1052

1053
1054
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
1055
1056
            ).to(device)
            tensor_size = torch.tensor([size], dtype=torch.long, device=device)
1057

1058
1059
            dist.broadcast(tensor_size, src=src, group=dist_group)
            dist.broadcast(tensor_data, src=src, group=dist_group)
1060
1061
        return data
    else:
1062
        tensor_size = torch.tensor([0], dtype=torch.long, device=device)
1063
        dist.broadcast(tensor_size, src=src, group=dist_group)
1064
1065
1066
1067
1068
        size = tensor_size.item()

        if size == 0:
            return []

1069
        tensor_data = torch.empty(size, dtype=torch.uint8, device=device)
1070
        dist.broadcast(tensor_data, src=src, group=dist_group)
1071

1072
        serialized_data = bytes(tensor_data.cpu().numpy())
1073
1074
        data = pickle.loads(serialized_data)
        return data
1075
1076


1077
1078
1079
1080
1081
1082
1083
def point_to_point_pyobj(
    data: List[Any],
    rank: int,
    group: Optional[torch.distributed.ProcessGroup] = None,
    src: int = 0,
    dst: int = 1,
):
1084
    """Send data from src to dst in group using DeviceToDevice communication."""
1085

1086
1087
    if rank == src:
        if len(data) == 0:
1088
1089
1090
            tensor_size = torch.tensor(
                [0], dtype=torch.long, device=torch.cuda.current_device()
            )
1091
1092
1093
1094
1095
1096
            dist.send(tensor_size, dst=dst, group=group)
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
1097
1098
1099
1100
1101
1102
            ).cuda(
                device=torch.cuda.current_device()
            )  # Move to GPU
            tensor_size = torch.tensor(
                [size], dtype=torch.long, device=torch.cuda.current_device()
            )
1103
1104
1105
1106
1107
1108

            dist.send(tensor_size, dst=dst, group=group)
            dist.send(tensor_data, dst=dst, group=group)
        return data

    elif rank == dst:
1109
1110
1111
        tensor_size = torch.tensor(
            [0], dtype=torch.long, device=torch.cuda.current_device()
        )
1112
1113
1114
1115
1116
1117
        dist.recv(tensor_size, src=src, group=group)
        size = tensor_size.item()

        if size == 0:
            return []

1118
1119
1120
        tensor_data = torch.empty(
            size, dtype=torch.uint8, device=torch.cuda.current_device()
        )
1121
1122
        dist.recv(tensor_data, src=src, group=group)

1123
1124
1125
        serialized_data = bytes(
            tensor_data.cpu().numpy()
        )  # Move back to host for deserialization
1126
1127
1128
1129
1130
1131
1132
        data = pickle.loads(serialized_data)
        return data

    # Other ranks in pp_group do nothing
    return []


1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
1162
1163


Lianmin Zheng's avatar
Lianmin Zheng committed
1164
1165
def get_zmq_socket(
    context: zmq.Context, socket_type: zmq.SocketType, endpoint: str, bind: bool
1166
) -> zmq.Socket:
1167
1168
1169
1170
1171
1172
1173
1174
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

1175
    socket = context.socket(socket_type)
1176
1177
    if endpoint.find("[") != -1:
        socket.setsockopt(zmq.IPV6, 1)
1178
1179

    def set_send_opt():
1180
        socket.setsockopt(zmq.SNDHWM, 0)
1181
        socket.setsockopt(zmq.SNDBUF, buf_size)
1182
1183

    def set_recv_opt():
1184
        socket.setsockopt(zmq.RCVHWM, 0)
1185
        socket.setsockopt(zmq.RCVBUF, buf_size)
1186
1187
1188
1189
1190
1191
1192
1193

    if socket_type == zmq.PUSH:
        set_send_opt()
    elif socket_type == zmq.PULL:
        set_recv_opt()
    elif socket_type == zmq.DEALER:
        set_send_opt()
        set_recv_opt()
1194
1195
1196
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

Lianmin Zheng's avatar
Lianmin Zheng committed
1197
1198
1199
1200
1201
    if bind:
        socket.bind(endpoint)
    else:
        socket.connect(endpoint)

1202
    return socket
1203
1204
1205


def dump_to_file(dirpath, name, value):
1206
    from sglang.srt.distributed import get_tensor_model_parallel_rank
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
1244
1245
1246
1247
1248
1249
1250
1251
1252


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
1253
    # sglang uses prometheus multiprocess mode
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
1270
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
1271
1272
1273
1274
1275
1276
1277
1278
1279
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
1280
1281


1282
1283
1284
1285
1286
1287
1288
1289
1290
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
1291
1292
1293
1294
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
1295
            [
HAI's avatar
HAI committed
1296
                "rocminfo | grep 'gfx' -A 100 | grep 'Pool 1' -A 5 | grep 'Size:' | awk '{print $2}'"
1297
            ],
HAI's avatar
HAI committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
1308
            float(mem.split("(")[0].strip()) / 1024
HAI's avatar
HAI committed
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
            for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


1324
1325
1326
1327
1328
1329
1330
def get_device_sm():
    if torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability()
        return major * 10 + minor
    return 0


HAI's avatar
HAI committed
1331
def get_nvgpu_memory_capacity():
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
1352
1353
1354
1355
1356
1357
1358
            # Fallback to torch.cuda.mem_get_info() when failed to get memory capacity from nvidia-smi,
            # typically in NVIDIA MIG mode.
            if torch.cuda.is_available():
                logger.warning(
                    "Failed to get GPU memory capacity from nvidia-smi, falling back to torch.cuda.mem_get_info()."
                )
                return torch.cuda.mem_get_info()[1] // 1024 // 1024  # unit: MB
1359
1360
1361
1362
1363
1364
1365
1366
1367
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
1368
1369


1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
def get_hpu_memory_capacity():
    try:
        # Run hl-smi and capture the output
        result = subprocess.run(
            ["hl-smi --query | grep 'Total'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"hl-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem.split(" ")[-2]) for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "hl-smi not found. Ensure Habana drivers are installed and accessible."
        )


1401
1402
1403
1404
1405
1406
1407
1408
1409
def get_npu_memory_capacity():
    try:
        import torch_npu

        return torch.npu.mem_get_info()[1] // 1024 // 1024  # unit: MB
    except ImportError as e:
        raise ImportError("torch_npu is required when run on npu device.")


Lianmin Zheng's avatar
Lianmin Zheng committed
1410
def get_device_memory_capacity(device: str = None):
1411
1412
1413
1414
1415
1416
    if is_cuda():
        gpu_mem = get_nvgpu_memory_capacity()
    elif is_hip():
        gpu_mem = get_amdgpu_memory_capacity()
    elif device == "hpu":
        gpu_mem = get_hpu_memory_capacity()
1417
1418
    elif device == "npu":
        gpu_mem = get_npu_memory_capacity()
1419
1420
1421
1422
1423
1424
1425
    else:
        # GPU memory is not known yet or no GPU is available.
        gpu_mem = None

    return gpu_mem


1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
# Copy from pytorch and OpenRLHF to allow creating multiple main groups.
# https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py
# https://github.com/OpenRLHF/OpenRLHF/blob/main/openrlhf/utils/distributed_util.py
def init_custom_process_group(
    backend=None,
    init_method=None,
    timeout=None,
    world_size=-1,
    rank=-1,
    store=None,
    group_name=None,
    pg_options=None,
1438
    device_id=None,
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
):
    from torch.distributed.distributed_c10d import (
        Backend,
        PrefixStore,
        _new_process_group_helper,
        _world,
        default_pg_timeout,
        rendezvous,
    )

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = default_pg_timeout

    # backward compatible API
    if store is None:
        rendezvous_iterator = rendezvous(init_method, rank, world_size, timeout=timeout)
        store, rank, world_size = next(rendezvous_iterator)
        store.set_timeout(timeout)

        # Use a PrefixStore to avoid accidental overrides of keys used by
        # different systems (e.g. RPC) in case the store is multi-tenant.
        store = PrefixStore(group_name, store)

    # NOTE: The pg_options parameter was renamed into backend_options in PyTorch 2.6.0
    # https://github.com/pytorch/pytorch/commit/a0c7029a75628cd5fa8df83c0de0ea98ee7fd844
    # We need to determine the appropriate parameter name based on PyTorch version
    pg_options_param_name = (
        "backend_options" if str(torch.__version__) >= "2.6" else "pg_options"
    )
    pg, _ = _new_process_group_helper(
        world_size,
        rank,
        [],
        backend,
        store,
        group_name=group_name,
        **{pg_options_param_name: pg_options},
        timeout=timeout,
1492
        device_id=device_id,
1493
1494
1495
1496
1497
1498
1499
    )

    _world.pg_group_ranks[pg] = {i: i for i in range(world_size)}

    return pg


1500
1501
def crash_on_warnings():
    # Crash on warning if we are running CI tests
1502
    return get_bool_env_var("SGLANG_IS_IN_CI")
1503
1504


1505
1506
1507
1508
1509
def print_warning_once(msg: str) -> None:
    # Set the stacklevel to 2 to print the caller's line info
    logger.warning(msg, stacklevel=2)


1510
1511
1512
1513
1514
@functools.lru_cache(None)
def print_info_once(msg: str) -> None:
    logger.info(msg)


1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
def get_device_name(device_id: int = 0) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_name(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        return torch.xpu.get_device_name(device_id)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return torch.hpu.get_device_name(device_id)

1525
1526
1527
    if hasattr(torch, "npu") and torch.npu.is_available():
        return torch.npu.get_device_name(device_id)

1528

1529
1530
1531
1532
1533
1534
1535
@lru_cache(maxsize=1)
def is_habana_available() -> bool:
    return find_spec("habana_frameworks") is not None


@lru_cache(maxsize=8)
def get_device(device_id: Optional[int] = None) -> str:
1536
1537
1538
1539
1540
1541
1542
1543
1544
    if is_cpu():
        if cpu_has_amx_support():
            logger.info("Intel AMX is detected, using CPU with Intel AMX support.")
        else:
            logger.warning(
                "CPU device enabled, using torch native backend, low performance expected."
            )
        return "cpu"

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        if device_id is None:
            return "cuda"
        return "cuda:{}".format(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        if device_id == None:
            return "xpu"
        return "xpu:{}".format(device_id)

1555
1556
1557
1558
1559
    if hasattr(torch, "npu") and torch.npu.is_available():
        if device_id == None:
            return "npu"
        return "npu:{}".format(device_id)

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                if device_id == None:
                    return "hpu"
                return "hpu:{}".format(device_id)
        except ImportError as e:
            raise ImportError(
                "Habana frameworks detected, but failed to import 'habana_frameworks.torch.hpu'."
            )

    raise RuntimeError("No accelerator (CUDA, XPU, HPU) is available.")


@lru_cache(maxsize=1)
def get_device_count() -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        try:
            return torch.cuda.device_count()
        except RuntimeError:
            return 0

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        try:
            return torch.xpu.device_count()
        except RuntimeError:
            return 0

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                return torch.hpu.device_count()
        except (ImportError, RuntimeError):
            return 0

    return 0  # No accelerators available


1602
1603
1604
1605
1606
1607
1608
def get_device_core_count(device_id: int = 0) -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_properties(device_id).multi_processor_count

    return 0


1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
    major, minor = None, None
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        major, minor, *_ = torch.xpu.get_device_capability(device_id)["version"].split(
            "."
        )
        major, minor = int(major), int(minor)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        try:
1622
1623
1624
1625
            # TODO(HandH1998): `get_device_capability` is not supported by `torch.hpu` for now.
            # Update this once the support is available.
            # major, minor = torch.hpu.get_device_capability(device_id)
            major, minor = None, None
1626
1627
1628
1629
1630
1631
1632
1633
        except Exception as e:
            raise RuntimeError(
                f"An error occurred while getting device capability of hpu: {e}."
            ) from e

    return major, minor


1634
1635
1636
1637
1638
1639
1640
1641
1642
def get_npu_compiler_config():
    config = {
        "frozen_parameter": True,
        "tiling_schedule_optimize": True,
        "topology_sorting_strategy": "StableRDFS",
    }
    return config


1643
1644
1645
1646
def get_compiler_backend() -> str:
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return "hpu_backend"

1647
    if hasattr(torch, "npu") and torch.npu.is_available():
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
        try:
            import torchair
            import torchair.ge_concrete_graph.ge_converter.experimental.patch_for_hcom_allreduce
            from torchair.configs.compiler_config import CompilerConfig
        except ImportError as e:
            raise ImportError(
                "NPU detected, but torchair package is not installed. "
                "Please install torchair for torch.compile support on NPU."
            )
        compiler_config = CompilerConfig()
        predefined_config = get_npu_compiler_config()
        for k, v in predefined_config.items():
            setattr(compiler_config.experimental_config, k, v)
1661

1662
        npu_backend = torchair.get_npu_backend(compiler_config=compiler_config)
1663
1664
        return npu_backend

1665
1666
1667
    return "inductor"


1668
1669
1670
sglang_lib = Library("sglang", "FRAGMENT")  # noqa


1671
1672
1673
1674
1675
1676
# Some backends use pytorch version < 2.4.0 which doesn't
# support `torch.library.custom_op`.
def supports_custom_op() -> bool:
    return hasattr(torch.library, "custom_op")


1677
1678
1679
1680
1681
1682
1683
def direct_register_custom_op(
    op_name: str,
    op_func: Callable,
    mutates_args: List[str],
    fake_impl: Optional[Callable] = None,
    target_lib: Optional[Library] = None,
):
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
    """
    `torch.library.custom_op` can have significant overhead because it
    needs to consider complicated dispatching logic. This function
    directly registers a custom op and dispatches it to the CUDA backend.
    See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
    for more details.

    By default, the custom op is registered to the vLLM library. If you
    want to register it to a different library, you can pass the library
    object to the `target_lib` argument.

    IMPORTANT: the lifetime of the operator is tied to the lifetime of the
    library object. If you want to bind the operator to a different library,
    make sure the library object is alive when the operator is used.
1698
1699
1700
1701

    Note: This function will silently skip registration if the operator
    with the same name is already registered to avoid RuntimeError in
    multi-engine scenarios (e.g., VERL framework).
1702
    """
1703
1704
    import torch.library

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
    my_lib = target_lib or sglang_lib

    # Check if operator is already registered to avoid duplicate registration
    # This is important for scenarios where multiple SGLang engines run in the same process
    try:
        # Try to access the operator to see if it's already registered
        lib_name = my_lib.m.name if hasattr(my_lib.m, "name") else "sglang"
        if hasattr(torch.ops, lib_name) and hasattr(
            getattr(torch.ops, lib_name), op_name
        ):
            # Operator already exists, skip registration
            return
    except (AttributeError, RuntimeError):
        # Operator doesn't exist, proceed with registration
        pass

1721
1722
1723
1724
1725
1726
1727
1728
    if hasattr(torch.library, "infer_schema"):
        schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
    else:
        # for pytorch 2.4
        import torch._custom_op.impl

        schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)

1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    try:
        my_lib.define(op_name + schema_str)
        my_lib.impl(op_name, op_func, "CUDA")
        if fake_impl is not None:
            my_lib._register_fake(op_name, fake_impl)
    except RuntimeError as error:
        if "Tried to register an operator" in str(e) and "multiple times" in str(e):
            # Silently ignore duplicate registration errors
            # This can happen in multi-engine scenarios
            pass
        else:
            # Re-raise other RuntimeErrors
            raise error
    except AttributeError as error:
        # Always re-raise AttributeError as it indicates missing dependencies
        raise error
1745
1746


1747
def set_gpu_proc_affinity(
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    tp_size: int,
    nnodes: int,
    gpu_id: int,
):
    # current process
    pid = os.getpid()
    p = psutil.Process(pid)

    tp_size_per_node = tp_size // nnodes

    # total physical cores
    total_pcores = psutil.cpu_count(logical=False)
    # physical cores per TP (N.B. more Cores than GPUs on node)
    num_cores_bind = total_pcores // tp_size_per_node

    # able to handle multiple DP per node
    start_cpu_id = (gpu_id * num_cores_bind) % total_pcores
    end_cpu_id = start_cpu_id + num_cores_bind

    if psutil.cpu_count() != psutil.cpu_count(logical=False):
        # HT on
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1769
1770
1771
        lower_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]
        upper_cpu_ids = [id + total_pcores for id in range(start_cpu_id, end_cpu_id)]
        bind_cpu_ids = list(itertools.chain(lower_cpu_ids, upper_cpu_ids))
1772
1773
1774
1775
1776
1777
1778
    else:
        # HT off
        bind_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]

    # set cpu_affinity to current process
    p.cpu_affinity(bind_cpu_ids)
    logger.info(f"Process {pid} gpu_id {gpu_id} is running on CPUs: {p.cpu_affinity()}")
1779
1780


1781
1782
1783
1784
1785
@lru_cache(maxsize=2)
def disable_request_logging() -> bool:
    return get_bool_env_var("SGLANG_DISABLE_REQUEST_LOGGING")


1786
1787
1788
1789
1790
def dataclass_to_string_truncated(
    data, max_length=2048, skip_names: Optional[Set[str]] = None
):
    if skip_names is None:
        skip_names = set()
1791
1792
1793
    if isinstance(data, str):
        if len(data) > max_length:
            half_length = max_length // 2
1794
            return f"{repr(data[:half_length])} ... {repr(data[-half_length:])}"
1795
        else:
1796
            return f"{repr(data)}"
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
    elif isinstance(data, (list, tuple)):
        if len(data) > max_length:
            half_length = max_length // 2
            return str(data[:half_length]) + " ... " + str(data[-half_length:])
        else:
            return str(data)
    elif isinstance(data, dict):
        return (
            "{"
            + ", ".join(
1807
                f"'{k}': {dataclass_to_string_truncated(v, max_length)}"
1808
                for k, v in data.items()
1809
                if k not in skip_names
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
            )
            + "}"
        )
    elif dataclasses.is_dataclass(data):
        fields = dataclasses.fields(data)
        return (
            f"{data.__class__.__name__}("
            + ", ".join(
                f"{f.name}={dataclass_to_string_truncated(getattr(data, f.name), max_length)}"
                for f in fields
1820
                if f.name not in skip_names
1821
1822
1823
            )
            + ")"
        )
1824
    else:
1825
        return str(data)
Tanjiro's avatar
Tanjiro committed
1826
1827


1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
def permute_weight(x: torch.Tensor) -> torch.Tensor:
    b_ = x.shape[0]
    n_ = x.shape[1]
    k_ = x.shape[2]

    x_ = x
    if x.dtype == torch.bfloat16 or x.dtype == torch.float16:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 32), 4, 8)
    elif x.dtype == torch.float8_e4m3fnuz or x.dtype == torch.int8:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 64), 4, 16)
    else:
1839
1840
        # return x_
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 8), 2, 4)
1841
1842
1843
1844
1845
1846
1847

    x_ = x_.permute(0, 1, 3, 4, 2, 5)
    x_ = x_.contiguous()
    x_ = x_.view(*x.shape)
    return x_


1848
1849
class MultiprocessingSerializer:
    @staticmethod
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
    def serialize(obj, output_str: bool = False):
        """
        Serialize a Python object using ForkingPickler.

        Args:
            obj: The object to serialize.
            output_str (bool): If True, return a base64-encoded string instead of raw bytes.

        Returns:
            bytes or str: The serialized object.
        """
1861
1862
1863
        buf = io.BytesIO()
        ForkingPickler(buf).dump(obj)
        buf.seek(0)
1864
1865
1866
1867
        output = buf.read()

        if output_str:
            # Convert bytes to base64-encoded string
1868
            output = pybase64.b64encode(output).decode("utf-8")
1869
1870

        return output
1871
1872
1873

    @staticmethod
    def deserialize(data):
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
        """
        Deserialize a previously serialized object.

        Args:
            data (bytes or str): The serialized data, optionally base64-encoded.

        Returns:
            The deserialized Python object.
        """
        if isinstance(data, str):
            # Decode base64 string to bytes
1885
            data = pybase64.b64decode(data, validate=True)
1886

1887
        return ForkingPickler.loads(data)
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898


def debug_timing(func):
    # todo: replace with a more organized instrumentation
    def wrapper(*args, **kwargs):
        if logger.isEnabledFor(logging.DEBUG):
            tic = torch.cuda.Event(enable_timing=True)
            toc = torch.cuda.Event(enable_timing=True)
            tic.record()
            result = func(*args, **kwargs)
            toc.record()
1899
            toc.synchronize()  # Wait for the function to complete without synchronizing all ops on the GPU
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
            elapsed = tic.elapsed_time(toc)
            indices = kwargs.get("indices", args[1] if len(args) > 1 else None)
            num_tokens = len(indices) if indices is not None else 0
            throughput = num_tokens / elapsed * 1000 if elapsed > 0 else 0
            logger.debug(
                f"Transfer time: {elapsed} ms, throughput: {throughput} tokens/s"
            )
            return result
        else:
            return func(*args, **kwargs)

    return wrapper
bjmsong's avatar
bjmsong committed
1912
1913
1914
1915
1916
1917


def nullable_str(val: str):
    if not val or val == "None":
        return None
    return val
1918
1919


1920
1921
1922
1923
1924
1925
1926
1927
1928
def pyspy_dump_schedulers():
    """py-spy dump on all scheduler in a local node."""
    try:
        pid = psutil.Process().pid
        # Command to run py-spy with the PID
        cmd = f"py-spy dump --pid {pid}"
        result = subprocess.run(
            cmd, shell=True, capture_output=True, text=True, check=True
        )
1929
        logger.error(f"Pyspy dump for PID {pid}:\n{result.stdout}")
1930
    except subprocess.CalledProcessError as e:
1931
        logger.error(f"Pyspy failed to dump PID {pid}. Error: {e.stderr}")
1932
1933
1934
1935
1936
1937
1938
1939
1940


def kill_itself_when_parent_died():
    if sys.platform == "linux":
        # sigkill this process when parent worker manager dies
        PR_SET_PDEATHSIG = 1
        libc = ctypes.CDLL("libc.so.6")
        libc.prctl(PR_SET_PDEATHSIG, signal.SIGKILL)
    else:
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1941
        logger.warning("kill_itself_when_parent_died is only supported in linux.")
1942
1943


1944
def set_uvicorn_logging_configs():
1945
1946
    from uvicorn.config import LOGGING_CONFIG

1947
1948
1949
1950
1951
1952
1953
1954
    LOGGING_CONFIG["formatters"]["default"][
        "fmt"
    ] = "[%(asctime)s] %(levelprefix)s %(message)s"
    LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
    LOGGING_CONFIG["formatters"]["access"][
        "fmt"
    ] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
    LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982


def get_ip() -> str:
    # SGLANG_HOST_IP env can be ignore
    host_ip = os.getenv("SGLANG_HOST_IP", "") or os.getenv("HOST_IP", "")
    if host_ip:
        return host_ip

    # IP is not set, try to get it from the network interface

    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

1983
1984
1985
1986
1987
1988
1989
1990
1991
    # try  using hostname
    hostname = socket.gethostname()
    try:
        ip_addr = socket.gethostbyname(hostname)
        warnings.warn("using local ip address: {}".format(ip_addr))
        return ip_addr
    except Exception:
        pass

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
    warnings.warn(
        "Failed to get the IP address, using 0.0.0.0 by default."
        "The value can be set by the environment variable"
        " SGLANG_HOST_IP or HOST_IP.",
        stacklevel=2,
    )
    return "0.0.0.0"


def get_open_port() -> int:
    port = os.getenv("SGLANG_PORT")
    if port is not None:
2004
        port = int(port)
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
        while True:
            try:
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    s.bind(("", port))
                    return port
            except OSError:
                port += 1  # Increment port number if already in use
                logger.info("Port %d is already in use, trying port %d", port - 1, port)
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def is_valid_ipv6_address(address: str) -> bool:
    try:
        ipaddress.IPv6Address(address)
        return True
    except ValueError:
        return False
2031
2032


2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
def maybe_wrap_ipv6_address(address: str) -> str:
    if is_valid_ipv6_address(address):
        return f"[{address}]"
    return address


def format_tcp_address(ip: str, port: int) -> str:
    return f"tcp://{maybe_wrap_ipv6_address(ip)}:{port}"


Vincent's avatar
Vincent committed
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
def configure_ipv6(dist_init_addr):
    addr = dist_init_addr
    end = addr.find("]")
    if end == -1:
        raise ValueError("invalid IPv6 address format: missing ']'")

    host = addr[: end + 1]

    # this only validates the address without brackets: we still need the below checks.
    # if it's invalid, immediately raise an error so we know it's not formatting issues.
    if not is_valid_ipv6_address(host[1:end]):
        raise ValueError(f"invalid IPv6 address: {host}")

    port_str = None
    if len(addr) > end + 1:
        if addr[end + 1] == ":":
            port_str = addr[end + 2 :]
        else:
            raise ValueError("received IPv6 address format: expected ':' after ']'")

    if not port_str:
        raise ValueError(
            "a port must be specified in IPv6 address (format: [ipv6]:port)"
        )

    try:
        port = int(port_str)
    except ValueError:
        raise ValueError(f"invalid port in IPv6 address: '{port_str}'")
    return port, host


2075
def launch_dummy_health_check_server(host, port, enable_metrics):
2076
2077
    import asyncio

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
    import uvicorn
    from fastapi import FastAPI, Response

    app = FastAPI()

    @app.get("/health")
    async def health():
        """Check the health of the http server."""
        return Response(status_code=200)

    @app.get("/health_generate")
    async def health_generate():
        """Check the health of the http server."""
        return Response(status_code=200)

2093
2094
2095
2096
2097
    # Add prometheus middleware
    if enable_metrics:
        add_prometheus_middleware(app)
        enable_func_timer()

2098
    config = uvicorn.Config(
2099
2100
2101
2102
        app,
        host=host,
        port=port,
        timeout_keep_alive=5,
2103
2104
2105
        loop="auto",
        log_config=None,
        log_level="warning",
2106
    )
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
    server = uvicorn.Server(config=config)

    try:
        loop = asyncio.get_running_loop()
        logger.info(
            f"Dummy health check server scheduled on existing loop at {host}:{port}"
        )
        loop.create_task(server.serve())

    except RuntimeError:
        logger.info(f"Starting dummy health check server at {host}:{port}")
        server.run()
2119
2120


2121
2122
2123
2124
def create_checksum(directory: str):
    raise NotImplementedError()


2125
2126
2127
2128
2129
def set_cuda_arch():
    if is_flashinfer_available():
        capability = torch.cuda.get_device_capability()
        arch = f"{capability[0]}.{capability[1]}"
        os.environ["TORCH_CUDA_ARCH_LIST"] = f"{arch}{'+PTX' if arch == '9.0' else ''}"
2130
2131


Lianmin Zheng's avatar
Lianmin Zheng committed
2132
2133
2134
2135
def next_power_of_2(n: int):
    return 1 << (n - 1).bit_length() if n > 0 else 1


Ying Sheng's avatar
Ying Sheng committed
2136
2137
2138
2139
def round_up(x: int, y: int) -> int:
    return ((x - 1) // y + 1) * y


Lianmin Zheng's avatar
Lianmin Zheng committed
2140
2141
2142
setattr(triton, "next_power_of_2", next_power_of_2)


2143
2144
2145
2146
2147
class EmptyContextManager:
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
2148
2149
2150
        pass


2151
2152
2153
2154
def empty_context(*args, **kwargs):
    return EmptyContextManager()


2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
def add_prefix(name: str, prefix: str) -> str:
    """Add a weight path prefix to a module name.

    Args:
        name: base module name.
        prefix: weight prefix str to added to the front of `name` concatenated with `.`.

    Returns:
        The string `prefix.name` if prefix is non-empty, otherwise just `name`.
    """
    return name if not prefix else f"{prefix}.{name}"
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191


def is_remote_url(url: Union[str, Path]) -> bool:
    """
    Check if the URL is a remote URL of the format:
    <connector_type>://<host>:<port>/<model_name>
    """
    if isinstance(url, Path):
        return False

    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    return m is not None


def parse_connector_type(url: str) -> str:
    """
    Parse the connector type from the URL of the format:
    <connector_type>://<path>
    """
    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    if m is None:
        return ""

    return m.group(1)
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220


def retry(
    fn,
    max_retry: int,
    initial_delay: float = 2.0,
    max_delay: float = 60.0,
    should_retry: Callable[[Any], bool] = lambda e: True,
):
    for try_index in itertools.count():
        try:
            return fn()
        except Exception as e:
            if try_index >= max_retry:
                raise Exception(f"retry() exceed maximum number of retries.")

            if not should_retry(e):
                raise Exception(f"retry() observe errors that should not be retried.")

            delay = min(initial_delay * (2**try_index), max_delay) * (
                0.75 + 0.25 * random.random()
            )

            logger.warning(
                f"retry() failed once ({try_index}th try, maximum {max_retry} retries). Will delay {delay:.2f}s and retry. Error: {e}"
            )
            traceback.print_exc()

            time.sleep(delay)
Mick's avatar
Mick committed
2221
2222
2223
2224
2225
2226
2227
2228
2229


def flatten_nested_list(nested_list):
    if isinstance(nested_list, list):
        return [
            item for sublist in nested_list for item in flatten_nested_list(sublist)
        ]
    else:
        return [nested_list]
2230
2231


2232
2233
2234
2235
2236
2237
2238
2239
def is_non_idle_and_non_empty(forward_mode, hidden_states):
    return (
        (forward_mode is not None)
        and not forward_mode.is_idle()
        and hidden_states.shape[0] > 0
    )


2240
2241
2242
2243
2244
2245
2246
def fast_topk(values, topk, dim):
    if topk == 1:
        # Use max along the specified dimension to get both value and index
        return torch.max(values, dim=dim, keepdim=True)
    else:
        # Use topk for efficiency with larger k values
        return torch.topk(values, topk, dim=dim)
2247
2248


2249
2250
2251
2252
2253
2254
def bind_or_assign(target, source):
    if target is not None:
        target.copy_(source)
        return target
    else:
        return source
2255
2256


2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
def get_local_ip_auto() -> str:
    interface = os.environ.get("SGLANG_LOCAL_IP_NIC", None)
    return (
        get_local_ip_by_nic(interface)
        if interface is not None
        else get_local_ip_by_remote()
    )


def get_local_ip_by_nic(interface: str) -> str:
    try:
        import netifaces
    except ImportError as e:
        raise ImportError(
            "Environment variable SGLANG_LOCAL_IP_NIC requires package netifaces, please install it through 'pip install netifaces'"
        ) from e

    try:
        addresses = netifaces.ifaddresses(interface)
        if netifaces.AF_INET in addresses:
            for addr_info in addresses[netifaces.AF_INET]:
                ip = addr_info.get("addr")
                if ip and ip != "127.0.0.1" and ip != "0.0.0.0":
                    return ip
        if netifaces.AF_INET6 in addresses:
            for addr_info in addresses[netifaces.AF_INET6]:
                ip = addr_info.get("addr")
                if ip and not ip.startswith("fe80::") and ip != "::1":
                    return ip.split("%")[0]
    except (ValueError, OSError) as e:
        raise ValueError(
            "Can not get local ip from NIC. Please verify whether SGLANG_LOCAL_IP_NIC is set correctly."
        )

    # Fallback
    return get_local_ip_by_remote()


2295
2296
2297
2298
2299
2300
2301
2302
2303
def get_local_ip_by_remote() -> str:
    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

2304
2305
2306
2307
2308
2309
2310
2311
    try:
        hostname = socket.gethostname()
        ip = socket.gethostbyname(hostname)
        if ip and ip != "127.0.0.1" and ip != "0.0.0.0":
            return ip
    except Exception:
        pass

2312
2313
2314
2315
2316
2317
2318
2319
    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
Lianmin Zheng's avatar
Lianmin Zheng committed
2320
        raise ValueError("Can not get local ip")
2321
2322
2323
2324
2325
2326


def is_page_size_one(server_args):
    return server_args.page_size == 1


2327
2328
# TODO(hebiao064): Accelerate FA3 Spec Decode with topk > 1.
# TODO(hebiao064): Improve the acc rate for FA3 Spec Decode with topk == 1 and page_size > 1.
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
def is_no_spec_infer_or_topk_one(server_args):
    return server_args.speculative_eagle_topk is None or (
        server_args.speculative_eagle_topk is not None
        and server_args.speculative_eagle_topk == 1
        and is_page_size_one(server_args)
    )


def is_fa3_default_architecture(hf_config):
    architectures = getattr(hf_config, "architectures", None)
    if not isinstance(architectures, list) or not architectures:
        return False
    default_archs = {
        "Qwen2ForCausalLM",
        "Llama4ForConditionalGeneration",
        "LlamaForCausalLM",
Yineng Zhang's avatar
Yineng Zhang committed
2345
        "Gemma2ForCausalLM",
2346
        "Gemma3ForConditionalGeneration",
2347
2348
        "Qwen3ForCausalLM",
        "Qwen3MoeForCausalLM",
Yuxuan Zhang's avatar
Yuxuan Zhang committed
2349
        "Glm4MoeForCausalLM",
2350
        "Glm4vMoeForConditionalGeneration",
Ke Bao's avatar
Ke Bao committed
2351
        "Step3VLForConditionalGeneration",
2352
2353
    }
    return architectures[0] in default_archs
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366


# Can be more general if it is used in multiple places (keep it simple and thus not general now)
class BumpAllocator:
    def __init__(self, buffer_size: int, dtype, device):
        self._buffer = torch.zeros((buffer_size,), dtype=dtype, device=device)
        self._pointer = 0

    def allocate(self, size: int):
        assert self._pointer + size <= len(self._buffer)
        output = self._buffer[self._pointer : self._pointer + size]
        self._pointer += size
        return output
2367
2368
2369
2370
2371
2372
2373


def log_info_on_rank0(logger, msg):
    from sglang.srt.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() == 0:
        logger.info(msg)
fzyzcjy's avatar
fzyzcjy committed
2374
2375


2376
2377
2378
2379
2380
2381
2382
def load_json_config(data: str):
    try:
        return json.loads(data)
    except JSONDecodeError:
        return json.loads(Path(data).read_text())


fzyzcjy's avatar
fzyzcjy committed
2383
2384
def dispose_tensor(x: torch.Tensor):
    x.set_(torch.empty((0,), device=x.device, dtype=x.dtype))
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406


T = TypeVar("T")


class Withable(Generic[T]):
    def __init__(self):
        self._value: Optional[T] = None

    @property
    def value(self) -> T:
        return self._value

    @contextmanager
    def with_value(self, new_value: T):
        assert self._value is None
        self._value = new_value
        try:
            yield
        finally:
            assert self._value is new_value
            self._value = None
2407
2408


2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
def require_mlp_tp_gather(server_args):
    """
    Check if the input of MLP is obtained by all-gather rather than all-reduce. This only happens when each MLP TP group contains multiple attention DP groups.
    """
    if server_args.enable_dp_attention:
        assert server_args.dp_size > 1, "dp_size must be greater than 1"
        if (
            server_args.moe_dense_tp_size is None
        ):  # TODO(ch-wan): some MoE models do not have dense layers
            return True
        elif not server_args.enable_dp_lm_head:
            return True
2421
        elif server_args.moe_a2a_backend == "none":
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
            return True
        else:
            return (
                server_args.moe_dense_tp_size
                > server_args.tp_size // server_args.dp_size
            )
    else:
        return False


def require_attn_tp_gather(server_args):
    """
    Check if the input of attention is scattered.
    """
    assert server_args.moe_dense_tp_size in [1, None]
2437
    if server_args.moe_a2a_backend != "none" or server_args.moe_dense_tp_size == 1:
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
        if server_args.enable_dp_attention:
            return server_args.dp_size < server_args.tp_size
        else:
            return True
    else:
        return False


def require_gathered_buffer(server_args):
    return require_mlp_tp_gather(server_args) or require_attn_tp_gather(server_args)


def require_mlp_sync(server_args):
    return server_args.enable_dp_attention or require_gathered_buffer(server_args)


2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
def find_local_repo_dir(repo_id: str, revision: Optional[str] = None) -> Optional[str]:
    import huggingface_hub as hf

    # Build cache path
    cache_path = os.path.join(
        hf.constants.HF_HUB_CACHE,
        hf.constants.REPO_ID_SEPARATOR.join(["models", *repo_id.split("/")]),
    )

    # Get revision from main ref if not specified
    if not revision:
        ref_path = os.path.join(cache_path, "refs", "main")
        if os.path.isfile(ref_path):
            with open(ref_path) as f:
                revision = f.read().strip()

    # List files from revision directory
    if revision:
        rev_dir = os.path.join(cache_path, "snapshots", revision)
        if os.path.isdir(rev_dir):
            return rev_dir

    return None


def read_system_prompt_from_file(model_name: str) -> str:
    """Read system prompt from a file in the HuggingFace cache directory.

    Args:
        model_name: The model name to construct the file path

    Returns:
        The system prompt content from the file, or empty string if file not found
    """
    try:
        local_repo_dir = find_local_repo_dir(model_name)
        if local_repo_dir:
            system_prompt_file = os.path.join(local_repo_dir, "SYSTEM_PROMPT.txt")
            if os.path.exists(system_prompt_file):
                with open(system_prompt_file, "r", encoding="utf-8") as f:
                    return f.read()

        return ""
    except Exception:
        # If anything fails, return empty string
        return ""
2500
2501
2502
2503
2504
2505
2506
2507


def bind_or_assign(target, source):
    if target is not None:
        target.copy_(source)
        return target
    else:
        return source
2508
2509


2510
2511
2512
2513
2514
def prepack_weight_if_needed(weight):
    if weight.device != torch.device("cpu"):
        return weight
    if not cpu_has_amx_support():
        return weight
2515

2516
    return torch.ops.sgl_kernel.convert_weight_packed(weight)
2517
2518


2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
# TODO: currently gemm kernel has the below requirements:
# OC % TILE_N == 0, where TILE_N = 16
# IC % TILE_K == 0, where TILE_K = 32
def dim_is_supported(weight):
    return weight.size(0) % 16 == 0 and weight.size(1) % 32 == 0


def _process_weight_after_loading(module, weight_names, transpose_dims=None) -> None:
    # Pack weight for get better performance on CPU
    devices = {getattr(module, weight_name).device for weight_name in weight_names}
    assert len(devices) == 1, f"Expects all weights to be on the same device"
    device = devices.pop()

    if transpose_dims:
        assert len(weight_names) == len(
            transpose_dims
        ), "len(weight_names) should be equal to len(transpose_dims)"

    for i, weight_name in enumerate(weight_names):
        weight_tensor = getattr(module, weight_name)

        # We don't pack weight or use intel amx backend if any weight of this module has unsupported dim.
        if not dim_is_supported(weight_tensor):
            logger.warning(
                f"Expects weight.size(0) % 16 == 0 and weight.size(1) % 32 == 0 "
                f"but {weight_tensor.size(0)=} and {weight_tensor.size(1)=} in {module}. "
                f"{module} won't use intel amx backend."
            )
            module.use_intel_amx_backend = False
            return

        if transpose_dims and transpose_dims[i]:
            weight_tensor = weight_tensor.transpose(*transpose_dims[i])

        packed_weight = torch.nn.Parameter(
            prepack_weight_if_needed(weight_tensor),
            requires_grad=False,
        )
        packed_weight.__dict__ = weight_tensor.__dict__
        setattr(module, weight_name, packed_weight)

    module.use_intel_amx_backend = (
        device == torch.device("cpu") and cpu_has_amx_support()
2562
2563
    )

2564
2565
2566
2567
2568
2569
    if (
        module.use_intel_amx_backend
        and hasattr(module, "bias")
        and module.bias is not None
    ):
        module.bias = torch.nn.Parameter(module.bias.data.float(), requires_grad=False)
2570

2571

2572
2573
2574
2575
class PackWeightMethod:
    def __init__(self, weight_names, transpose_dims=None):
        self.weight_names = weight_names
        self.transpose_dims = transpose_dims
2576

2577
2578
    def process_weights_after_loading(self, module) -> None:
        _process_weight_after_loading(module, self.weight_names, self.transpose_dims)
2579
2580


2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
class LazyValue:
    def __init__(self, creator: Callable):
        self._creator = creator
        self._value = None

    @property
    def value(self):
        if self._creator is not None:
            self._value = self._creator()
            self._creator = None
        return self._value
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604


def dynamic_import(func_path: str):
    parts = func_path.split(".")
    if len(parts) < 2:
        raise ValueError(
            "func_path should contain both module name and func name (such as 'module.func')"
        )
    module_path = ".".join(parts[:-1])
    func_name = parts[-1]
    module = importlib.import_module(module_path)
    func = getattr(module, func_name)
    return func
fzyzcjy's avatar
fzyzcjy committed
2605
2606


2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
def gc_object_counts():
    import gc

    g0 = len(gc.get_objects(0))
    g1 = len(gc.get_objects(1))
    g2 = len(gc.get_objects(2))
    return g0, g1, g2


def configure_gc_warning(warn_threshold_secs):
    import gc

    gc_start_time = {}

    def gc_callback(phase, info):
        gen = info.get("generation", "?")
        if phase == "start":
            gc_start_time[gen] = time.time()
        elif phase == "stop":
            duration = time.time() - gc_start_time.get(gen, time.time())
            if duration > warn_threshold_secs:
                g0, g1, g2 = gc_object_counts()
                logger.warn(
                    f"LONG GARBAGE COLLECTION DETECTED | Generation {gen} | Duration: {duration:.4f}s | # Objects: gen0={g0}, gen1={g1}, gen2={g2} | "
                    f"This may cause latency jitter. Consider calling the freeze_gc API after sending a few warmup requests."
                )

    gc.callbacks.append(gc_callback)


def freeze_gc(context: str):
    import gc

    g0_before, g1_before, g2_before = gc_object_counts()
    gc.freeze()
    g0_after, g1_after, g2_after = gc_object_counts()
    logger.info(
        f"Freezing GC in {context} process. "
        f"gen0: {g0_before}->{g0_after}, "
        f"gen1: {g1_before}->{g1_after}, "
        f"gen2: {g2_before}->{g2_after}"
    )


fzyzcjy's avatar
fzyzcjy committed
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
def configure_gc_logger():
    logger.info("Enable GC Logger")

    import gc

    gc_start_time = {}

    def gc_callback(phase, info):
        gen = info.get("generation", "?")
        if phase == "start":
            gc_start_time[gen] = time.time()
            logger.info(f"GC start: Time {time.time()} | Generation {gen}")
        elif phase == "stop":
            duration = time.time() - gc_start_time.get(gen, time.time())
            collected = info.get("collected", "?")
            uncollectable = info.get("uncollectable", "?")
            logger.info(
                f"GC end: Time {time.time()} | Generation {gen} | "
                f"Duration: {duration:.4f}s | Collected: {collected} | Uncollectable: {uncollectable} "
                f'{"(LONG GC)" if duration > 0.1 else ""}'
            )

    gc.callbacks.append(gc_callback)
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683


# COPIED FROM DeepGEMM
def align(x: int, y: int) -> int:
    return ceil_div(x, y) * y


# COPIED FROM DeepGEMM
def ceil_div(x: int, y: int) -> int:
    return (x + y - 1) // y
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749


def parse_lscpu_topology():
    try:
        # Get CPU topology: CPU,Core,Socket,Node
        output = subprocess.check_output(
            ["lscpu", "-p=CPU,Core,Socket,Node"], text=True
        )
    except Exception as e:
        raise RuntimeError(f"Unexpected error running 'lscpu': {e}")

    # Parse only data lines (skip comments)
    cpu_info = []
    for line in output.splitlines():
        if not line.startswith("#"):
            cpu, core, socket, node = map(int, line.strip().split(","))
            cpu_info.append((cpu, core, socket, node))

    # [(0,0,0,0),(1,1,0,0),...,(43,43,0,1),...,(256,0,0,0),...]
    return cpu_info


def get_physical_cpus_by_numa():
    cpu_info = parse_lscpu_topology()

    # Map NUMA node -> set of (core_id, socket) to avoid duplicates
    # 0: {(0,0): 0, (1, 0): 1,...}
    # ...
    # 5: {(214,1): 214, (215,1): 215}
    physical_by_node = defaultdict(dict)  # node -> core_id -> cpu_id

    for cpu, core, socket, node in cpu_info:
        key = (core, socket)
        if key not in physical_by_node[node]:
            physical_by_node[node][
                key
            ] = cpu  # pick first CPU seen for that physical core

    # Retrieves CPUs that the current process is allowed to run on
    cpus_allowed_list = psutil.Process().cpu_affinity()

    # Convert to list of physical CPUs per node
    # 0: [0,1,2,...,42]
    # ...
    # 2: [86,87,...,127]
    # ...
    # 5: [214,215,...,255]
    node_to_cpus = {}
    for node, core_to_cpu in physical_by_node.items():
        cpus = sorted(core_to_cpu.values())
        allowed_cpus = set(cpus).intersection(cpus_allowed_list)
        node_to_cpus[node] = allowed_cpus

    return node_to_cpus


# Only physical cores are used. Logical cores are excluded.
def get_cpu_ids_by_node():
    node_to_cpus = get_physical_cpus_by_numa()
    # Sort by NUMA node index
    cpu_ids = [
        ",".join(map(str, sorted(node_to_cpus[node]))) for node in sorted(node_to_cpus)
    ]

    # ['0,1,2,3', '4,5,6,7', '8,9,10,11', '12,13,14,15', '16,17,18,19', '20,21,22,23']
    return cpu_ids
2750
2751
2752
2753
2754
2755
2756
2757
2758


def is_shm_available(dtype, world_size, local_size):
    return (
        cpu_has_amx_support()
        and dtype in [torch.bfloat16, torch.float]
        and world_size >= 1
        and world_size == local_size
    )
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803


def lru_cache_frozenset(maxsize=128):
    def _to_hashable(o):
        try:
            hash(o)
            return o
        except TypeError:
            # Not hashable; convert based on type
            if isinstance(o, (dict)):
                return frozenset(
                    (_to_hashable(k), _to_hashable(v)) for k, v in o.items()
                )
            elif isinstance(o, set):
                return frozenset(_to_hashable(v) for v in o)
            elif isinstance(o, (list, tuple)) or (
                isinstance(o, Sequence) and not isinstance(o, (str, bytes))
            ):
                return tuple(_to_hashable(v) for v in o)
            else:
                raise TypeError(f"Cannot make hashable: {type(o)}")

    def decorator(func):
        cache = OrderedDict()

        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            h_args = tuple(_to_hashable(a) for a in args)
            h_kwargs = frozenset(
                (_to_hashable(k), _to_hashable(v)) for k, v in kwargs.items()
            )
            key = (h_args, h_kwargs)
            if key in cache:
                cache.move_to_end(key)
                return cache[key]
            result = func(*args, **kwargs)
            cache[key] = result
            if maxsize is not None and len(cache) > maxsize:
                cache.popitem(last=False)
            return result

        wrapper.cache_clear = cache.clear  # For manual cache clearing
        return wrapper

    return decorator
2804
2805


2806
2807
2808
2809
def get_origin_rid(rid):
    return rid.split("_", 1)[1] if "_" in rid else rid


2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
def apply_module_patch(target_module, target_function, wrappers):
    original_module, original_function = parse_module_path(
        target_module, target_function, False
    )

    original_function_id = id(original_function)

    candidate = original_function
    for wrapper in wrappers:
        candidate = wrapper(candidate)
    if target_function is not None:
        setattr(original_module, target_function, candidate)

    for key, value in sys.modules.copy().items():
        if (
            target_function is not None
            and hasattr(value, target_function)
            and id(getattr(value, target_function)) == original_function_id
        ):
            setattr(value, target_function, candidate)


def parse_module_path(module_path, function_name, create_dummy):
    from importlib.machinery import ModuleSpec

    def create_dummy_module(full_path, parent=None):
        """Create and register a placeholder module"""
        dummy = types.ModuleType(full_path)
        dummy.__file__ = "vllm_ascend.dummy_module.py"
        dummy.__spec__ = ModuleSpec(full_path, None)
        sys.modules[full_path] = dummy
        if parent:
            setattr(parent, full_path.split(".")[-1], dummy)
        return dummy

    def create_placeholder_function(func_name):
        """Create dummy function that raises when called"""

        def placeholder(*args, **kwargs):
            raise NotImplementedError(f"Function {func_name} is a placeholder")

        placeholder.__name__ = func_name
        return placeholder

    modules = module_path.split(".")
    current_module = None
    processed_path = []

    for idx, part in enumerate(modules):
        current_path = ".".join(modules[: idx + 1])
        parent_path = ".".join(modules[:idx]) if idx > 0 else None

        try:
            current_module = importlib.import_module(current_path)
        except ModuleNotFoundError:
            # Handle missing module
            parent = importlib.import_module(parent_path) if parent_path else None
            if parent and hasattr(parent, part):
                # Use existing attribute from parent
                current_module = getattr(parent, part)
                # Check for early function resolution
                if function_name and hasattr(current_module, function_name):
                    return current_module, getattr(current_module, function_name)
                if function_name and create_dummy:
                    ph_func = create_placeholder_function(function_name)
                    setattr(current_module, function_name, ph_func)
                    return current_module, ph_func
                if function_name:
                    raise AttributeError(
                        f"Function {function_name} missing in {current_path}"
                    )
            else:
                if not create_dummy:
                    raise
                # Create and register dummy module
                current_module = create_dummy_module(
                    current_path,
                    parent=(
                        importlib.import_module(parent_path) if parent_path else None
                    ),
                )

        processed_path.append(part)

    # Final function handling
    final_module = sys.modules[module_path]
    if function_name is not None:
        if not hasattr(final_module, function_name):
            if create_dummy:
                ph_func = create_placeholder_function(function_name)
                setattr(final_module, function_name, ph_func)
            else:
                setattr(final_module, function_name, None)
        return final_module, getattr(final_module, function_name)

    return final_module, None
2906
2907


2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
def mxfp_supported():
    """
    Returns whether the current platform supports MX types.
    """
    if torch.version.hip:
        gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
        return any(gfx in gcn_arch for gfx in ["gfx95"])
    else:
        return False


2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
@lru_cache(maxsize=1)
def is_gfx95_supported():
    """
    Returns whether the current platform supports MX types.
    """
    if torch.version.hip:
        gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
        return any(gfx in gcn_arch for gfx in ["gfx95"])
    else:
        return False


2931
2932
2933
2934
2935
2936
2937
2938
2939
# LoRA-related constants and utilities
SUPPORTED_LORA_TARGET_MODULES = [
    "q_proj",
    "k_proj",
    "v_proj",
    "o_proj",
    "gate_proj",
    "up_proj",
    "down_proj",
2940
2941
    "qkv_proj",
    "gate_up_proj",
2942
2943
2944
]

LORA_TARGET_ALL_MODULES = "all"
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029


class ConcurrentCounter:
    """
    An asynchronous counter for managing concurrent tasks that need
    coordinated increments, decrements, and waiting until the count reaches zero.

    This class is useful for scenarios like tracking the number of in-flight tasks
    and waiting for them to complete.
    """

    def __init__(self, initial: int = 0):
        """
        Initialize the counter with an optional initial value.

        Args:
            initial (int): The initial value of the counter. Default is 0.
        """
        self._count = initial
        self._condition = asyncio.Condition()

    def value(self) -> int:
        """
        Return the current value of the counter.

        Note:
            This method is not synchronized. It may return a stale value
            if other coroutines are concurrently modifying the counter.

        Returns:
            int: The current counter value.
        """
        return self._count

    def __repr__(self) -> str:
        """Return an informative string representation of the counter."""
        return f"<ConcurrentCounter value={self.value()}>"

    async def increment(self, n: int = 1, notify_all: bool = True):
        """
        Atomically increment the counter by a given amount and notify all waiters.

        Args:
            n (int): The amount to increment the counter by. Default is 1.
            notify_all (bool): Whether to notify all waiters after incrementing. Default is True.
        """
        async with self._condition:
            self._count += n
            if notify_all:
                self._condition.notify_all()

    async def decrement(self, n: int = 1, notify_all: bool = True):
        """
        Atomically decrement the counter by a given amount and notify all waiters.

        Args:
            n (int): The amount to decrement the counter by. Default is 1.
            notify_all (bool): Whether to notify all waiters after decrementing. Default is True.
        """
        async with self._condition:
            self._count -= n
            if notify_all:
                self._condition.notify_all()

    async def wait_for(self, condition: Callable[[int], bool]):
        """
        Asynchronously wait until the counter satisfies a given condition.

        This suspends the calling coroutine without blocking the thread, allowing
        other tasks to run while waiting. When the condition is met, the coroutine resumes.

        Args:
            condition (Callable[[int], bool]): A function that takes the current counter value
                and returns True when the condition is satisfied.
        """
        async with self._condition:
            await self._condition.wait_for(lambda: condition(self._count))

    async def wait_for_zero(self):
        """
        Asynchronously wait until the counter reaches zero.

        This suspends the calling coroutine without blocking the thread, allowing
        other tasks to run while waiting. When the counter becomes zero, the coroutine resumes.
        """
3030
        await self.wait_for(lambda count: count == 0)
3031
3032
3033
3034
3035


@lru_cache(maxsize=1)
def is_triton_kernels_available() -> bool:
    return importlib.util.find_spec("triton_kernels") is not None
fzyzcjy's avatar
fzyzcjy committed
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045


def check_cuda_result(raw_output):
    import cuda.bindings.runtime as cuda_rt

    err, *results = raw_output
    if err != cuda_rt.cudaError_t.cudaSuccess:
        raise Exception(f"CUDA error: {err}")

    return results
3046
3047
3048
3049
3050
3051
3052
3053
3054


def numa_bind_to_node(node: int):
    libnuma = ctypes.CDLL("libnuma.so")
    if libnuma.numa_available() < 0:
        raise SystemError("numa not available on this system")

    libnuma.numa_run_on_node(ctypes.c_int(node))
    libnuma.numa_set_localalloc()
3055
3056
3057
3058
3059
3060
3061
3062
3063


def json_list_type(value):
    try:
        return json.loads(value)
    except json.JSONDecodeError:
        raise argparse.ArgumentTypeError(
            f"Invalid JSON list: {value}. Please provide a valid JSON list."
        )