utils.py 58.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Common utilities."""
Lianmin Zheng's avatar
Lianmin Zheng committed
15
import base64
16
import builtins
17
import ctypes
18
import dataclasses
19
import importlib
20
import io
21
import ipaddress
22
import itertools
23
import json
24
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
25
import os
26
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
27
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
28
import re
29
import resource
30
31
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
32
import socket
33
import subprocess
34
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
35
import tempfile
36
import threading
Lianmin Zheng's avatar
Lianmin Zheng committed
37
import time
38
import traceback
39
import warnings
40
from contextlib import contextmanager
41
from enum import Enum
42
from functools import lru_cache
43
from importlib.metadata import PackageNotFoundError, version
44
from importlib.util import find_spec
Lianmin Zheng's avatar
Lianmin Zheng committed
45
from io import BytesIO
46
from multiprocessing.reduction import ForkingPickler
47
from pathlib import Path
48
from typing import Any, Callable, Dict, List, Optional, Protocol, Set, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50

import numpy as np
51
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
52
53
import requests
import torch
54
import torch.distributed
55
import torch.distributed as dist
56
import triton
57
import zmq
Mick's avatar
Mick committed
58
from decord import VideoReader, cpu
59
from fastapi.responses import ORJSONResponse
60
from packaging import version as pkg_version
Mick's avatar
Mick committed
61
from PIL import Image
Lianmin Zheng's avatar
Lianmin Zheng committed
62
from starlette.routing import Mount
63
from torch import nn
64
from torch.func import functional_call
65
from torch.library import Library
66
from torch.profiler import ProfilerActivity, profile, record_function
67
from torch.utils._contextlib import _DecoratorContextManager
68
69
70
71
72
73
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
74

75
76
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
79

80
81
HIP_FP8_E4M3_FNUZ_MAX = 224.0

Lianmin Zheng's avatar
Lianmin Zheng committed
82

83
84
85
86
87
def get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")


88
# https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
89
90
91
92
def is_hip() -> bool:
    return torch.version.hip is not None


93
94
95
96
97
98
99
100
101
102
103
if is_hip():
    FP8_E4M3_MAX = HIP_FP8_E4M3_FNUZ_MAX
else:
    FP8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

FP8_E4M3_MIN = -FP8_E4M3_MAX

builtins.FP8_E4M3_MAX = FP8_E4M3_MAX
builtins.FP8_E4M3_MIN = FP8_E4M3_MIN


104
105
106
107
def is_rocm() -> bool:
    return torch.cuda.is_available() and torch.version.hip


108
def is_cuda():
109
    return torch.cuda.is_available() and torch.version.cuda
110
111
112
113
114
115
116
117
118
119
120
121
122
123


def is_cuda_alike():
    return is_cuda() or is_hip()


def is_hpu() -> bool:
    return hasattr(torch, "hpu") and torch.hpu.is_available()


def is_xpu() -> bool:
    return hasattr(torch, "xpu") and torch.xpu.is_available()


124
125
126
127
128
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
129
    if not get_bool_env_var("SGLANG_IS_FLASHINFER_AVAILABLE", default="true"):
130
        return False
131
    return importlib.util.find_spec("flashinfer") is not None and is_cuda()
132
133


134
def is_cuda_available():
135
    return is_cuda()
136
137


138
_ENABLE_TORCH_INFERENCE_MODE = get_bool_env_var(
139
    "SGLANG_ENABLE_TORCH_INFERENCE_MODE", "false"
140
)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194


class DynamicGradMode(_DecoratorContextManager):
    """
    A combination of torch.no_grad and torch.inference_mode,
    with their behavior controlled by an environment variable. Just refer to them.
    """

    @staticmethod
    def set_inference_mode(mode: bool):
        if isinstance(mode, bool):
            global _ENABLE_TORCH_INFERENCE_MODE

            _ENABLE_TORCH_INFERENCE_MODE = mode
        else:
            logger.warning("mode is not a boolean object")

    def __init__(self, mode=True):
        if not torch._jit_internal.is_scripting():
            super().__init__()
        if _ENABLE_TORCH_INFERENCE_MODE:
            self.mode = mode
        else:
            self.prev = False

    def __new__(cls, mode_or_orig_func=True if _ENABLE_TORCH_INFERENCE_MODE else None):
        if mode_or_orig_func is None or isinstance(mode_or_orig_func, bool):
            return super().__new__(cls)
        return cls()(mode_or_orig_func)

    def __enter__(self) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context = torch._C._InferenceMode(self.mode)
            self._inference_mode_context.__enter__()
        else:
            self.prev = torch.is_grad_enabled()
            torch.set_grad_enabled(False)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context.__exit__(exc_type, exc_value, traceback)
        else:
            torch.set_grad_enabled(self.prev)

    def clone(self) -> "DynamicGradMode":
        r"""
        Create a copy of this class
        """
        if _ENABLE_TORCH_INFERENCE_MODE:
            return self.__class__(self.mode)
        else:
            return self.__class__()


Liangsheng Yin's avatar
Liangsheng Yin committed
195
196
197
198
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
199

Liangsheng Yin's avatar
Liangsheng Yin committed
200
201
202
203
204
205
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
206

Liangsheng Yin's avatar
Liangsheng Yin committed
207
208
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
209

Liangsheng Yin's avatar
Liangsheng Yin committed
210
211
212
213
214
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
215

Liangsheng Yin's avatar
Liangsheng Yin committed
216
217
218
219
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
220
221


Liangsheng Yin's avatar
Liangsheng Yin committed
222
223
224
225
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
226
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
227
228
229
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
230
231


Liangsheng Yin's avatar
Liangsheng Yin committed
232
233
234
235
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
236
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
237
238
239
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


261
def get_available_gpu_memory(device, gpu_id, distributed=False, empty_cache=True):
Lianmin Zheng's avatar
Lianmin Zheng committed
262
263
264
265
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
266
    if device == "cuda":
267
        num_gpus = torch.cuda.device_count()
Zhang, Liangang's avatar
Zhang, Liangang committed
268
269
270
271
272
273
274
275
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

276
277
        if empty_cache:
            torch.cuda.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
278
279
280
281
282
283
284
285
286
287
288
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
289
290
291

        if empty_cache:
            torch.xpu.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
292
293
294
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
295

296
297
298
299
300
301
302
303
304
305
306
307
    elif device == "hpu":
        num_gpus = torch.hpu.device_count()
        assert gpu_id < num_gpus

        if torch.hpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.hpu.current_device()}, ",
                "which may cause useless memory allocation for torch HPU context.",
            )

        free_gpu_memory, total_gpu_memory = torch.hpu.mem_get_info()

308
309
310
311
    elif device == "cpu":
        # TODO: rename the variables in the current function to be not GPU specific
        free_gpu_memory = psutil.virtual_memory().available

Lianmin Zheng's avatar
Lianmin Zheng committed
312
313
    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
314
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
315
316
317
318
319
320
321
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()
    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    offloaded_parameters = False
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty_strided(
            size=p.data.size(),
            stride=p.data.stride(),
            dtype=p.data.dtype,
            layout=p.data.layout,
            device="cpu",
            pin_memory=pin_memory,
        )
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
        offloaded_parameters = True

    if offloaded_parameters:
        original_forward = module.forward

        def forward(*args, **kwargs):
            module.forward = original_forward
            device_state = {
                # here we blindly call `to(device)`
                # if the parameter is already on the device, it will be a no-op
                k: v.to(device, non_blocking=True)
                for k, v in module.state_dict().items()
            }
            output = functional_call(module, device_state, args=args, kwargs=kwargs)
            module.forward = forward
            return output

        module.forward = forward

    return module


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
    prefix: str = "",
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
    modules = torch.nn.ModuleList(
        [
403
            maybe_offload_to_cpu(layer_fn(idx=idx, prefix=add_prefix(idx, prefix)))
404
405
406
407
408
409
            for idx in range(num_hidden_layers)
        ]
    )
    return modules


Lianmin Zheng's avatar
Lianmin Zheng committed
410
def set_random_seed(seed: int) -> None:
411
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
412
    random.seed(seed)
413
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
414
415
416
417
418
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


419
def is_port_available(port):
420
    """Return whether a port is available."""
421
422
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
423
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
424
            s.bind(("", port))
425
            s.listen(1)
426
427
428
            return True
        except socket.error:
            return False
TianYu GUO's avatar
TianYu GUO committed
429
430
        except OverflowError:
            return False
431
432


Yuanhan Zhang's avatar
Yuanhan Zhang committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
510
511


Mick's avatar
Mick committed
512
513
514
515
516
517
518
519
520
521
522
523
def load_audio(audio_file: str, sr: int = 16000, mono: bool = True) -> np.ndarray:
    # Use soundfile here, since librosa use it under the hood,
    # and librosa will not support audio loading in the future
    import soundfile as sf
    from scipy.signal import resample

    # Load audio data
    if isinstance(audio_file, bytes):
        audio, original_sr = sf.read(BytesIO(audio_file))
    elif audio_file.startswith("data:"):
        audio_file = audio_file.split(",")[1]
        audio, original_sr = sf.read(BytesIO(base64.b64decode(audio_file)))
Mick's avatar
Mick committed
524
525
526
527
528
529
    elif audio_file.startswith("http://") or audio_file.startswith("https://"):
        timeout = int(os.getenv("REQUEST_TIMEOUT", "5"))
        response = requests.get(audio_file, stream=True, timeout=timeout)
        audio_file = BytesIO(response.content)
        response.close()
        audio, original_sr = sf.read(audio_file)
Mick's avatar
Mick committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    elif isinstance(audio_file, str):
        audio, original_sr = sf.read(audio_file)
    else:
        raise ValueError(f"Invalid audio format: {audio_file}")

    # Resample audio if the original sample rate is different from the desired sample rate
    if original_sr != sr:
        num_samples = int(len(audio) * float(sr) / original_sr)
        audio = resample(audio, num_samples)

    # Convert to mono if requested and audio is stereo
    if mono and len(audio.shape) > 1:
        audio = np.mean(audio, axis=1)

    return audio

Lianmin Zheng's avatar
Lianmin Zheng committed
546

Mick's avatar
Mick committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def encode_video(video_path, frame_count_limit=None):
    if not os.path.exists(video_path):
        logger.error(f"Video {video_path} does not exist")
        return []

    if frame_count_limit == 0:
        return []

    def uniform_sample(l, n):
        gap = len(l) / n
        idxs = [int(i * gap + gap / 2) for i in range(n)]
        return [l[i] for i in idxs]

    vr = VideoReader(video_path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)  # FPS
    frame_indices = [i for i in range(0, len(vr), sample_fps)]
    if frame_count_limit is not None and len(frame_indices) > frame_count_limit:
        frame_indices = uniform_sample(frame_indices, frame_count_limit)

    frames = vr.get_batch(frame_indices).asnumpy()
    frames = [Image.fromarray(v.astype("uint8")) for v in frames]
    return frames


571
572
573
def load_image(
    image_file: Union[Image.Image, str, bytes]
) -> tuple[Image.Image, tuple[int, int]]:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
574
    image = image_size = None
575
576
577
578
    if isinstance(image_file, Image.Image):
        image = image_file
        image_size = (image.width, image.height)
    elif isinstance(image_file, bytes):
579
580
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
581
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
582
583
584
        response = requests.get(image_file, stream=True, timeout=timeout).raw
        image = Image.open(response)
        response.close()
Lianmin Zheng's avatar
Lianmin Zheng committed
585
586
587
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
588
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
589
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
590
591
592
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
593
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
594
        image = Image.open(BytesIO(base64.b64decode(image_file)))
595
596
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
597

Yuanhan Zhang's avatar
Yuanhan Zhang committed
598
    return image, image_size
599
600


601
def suppress_other_loggers():
602
603
604
605
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

Yineng Zhang's avatar
Yineng Zhang committed
606
607
608
609
    try:
        from vllm.logger import logger as vllm_default_logger
    except ImportError:
        return
610
611

    vllm_default_logger.setLevel(logging.WARN)
612
613
614
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
615
616
617
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
618
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
619
620


621
def assert_pkg_version(pkg: str, min_version: str, message: str):
622
623
624
625
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
626
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
627
                f"is less than the minimum required version {min_version}. " + message
628
629
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
630
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
631
632
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
633
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
634
635


636
637
def kill_process_tree(parent_pid, include_parent: bool = True, skip_pid: int = None):
    """Kill the process and all its child processes."""
638
639
640
641
    # Remove sigchld handler to avoid spammy logs.
    if threading.current_thread() is threading.main_thread():
        signal.signal(signal.SIGCHLD, signal.SIG_DFL)

642
643
644
    if parent_pid is None:
        parent_pid = os.getpid()
        include_parent = False
Lianmin Zheng's avatar
Lianmin Zheng committed
645

646
    try:
647
        itself = psutil.Process(parent_pid)
648
649
650
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
651
    children = itself.children(recursive=True)
652
    for child in children:
653
654
        if child.pid == skip_pid:
            continue
655
656
657
658
659
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

660
    if include_parent:
661
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
662
663
664
665
            if parent_pid == os.getpid():
                itself.kill()
                sys.exit(0)

666
            itself.kill()
667

668
669
670
671
672
            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGQUIT)
        except psutil.NoSuchProcess:
            pass
673
674


675
def monkey_patch_p2p_access_check():
676
    """
677
    Monkey patch the slow p2p access check.
678
679
680
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

681
    import sglang.srt.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
682

683
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
684

Lianmin Zheng's avatar
Lianmin Zheng committed
685
    # Suppress the warnings from this delete function when using sglang.bench_one_batch
686
687
688
    from sglang.srt.distributed.device_communicators.custom_all_reduce import (
        CustomAllreduce,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
689
690
691

    setattr(CustomAllreduce, "__del__", lambda *args, **kwargs: None)

692

693
def monkey_patch_vllm_gguf_config():
Yineng Zhang's avatar
Yineng Zhang committed
694
695
696
697
698
699
700
701
    try:
        from vllm.model_executor.layers.quantization.gguf import (
            GGUFConfig,
            GGUFEmbeddingMethod,
            GGUFLinearMethod,
        )
    except ImportError:
        return
702

Yineng Zhang's avatar
Yineng Zhang committed
703
    from sglang.srt.layers.linear import LinearBase
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding

    def get_quant_method_with_embedding_replaced(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return GGUFLinearMethod(self)
        elif isinstance(layer, VocabParallelEmbedding):
            # patch to own VocabParallelEmbedding
            return GGUFEmbeddingMethod(self)
        return None

    setattr(GGUFConfig, "get_quant_method", get_quant_method_with_embedding_replaced)


719
720
721
722
723
724
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
725
        logger.debug("Setting Triton cache manager to: %s", manager)
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


757
758
759
760
761
762
763
764
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
765
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
766
767


768
def add_api_key_middleware(app, api_key: str):
769
770
771
772
773
774
775
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
776
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
777
        return await call_next(request)
778
779


780
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
781
    if get_bool_env_var("SGLANG_USE_MODELSCOPE"):
782
783
784
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

785
786
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
787
788
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
789
    return model_path, tokenizer_path
790
791
792


def configure_logger(server_args, prefix: str = ""):
793
794
795
796
797
798
799
800
801
802
    if SGLANG_LOGGING_CONFIG_PATH := os.getenv("SGLANG_LOGGING_CONFIG_PATH"):
        if not os.path.exists(SGLANG_LOGGING_CONFIG_PATH):
            raise Exception(
                "Setting SGLANG_LOGGING_CONFIG_PATH from env with "
                f"{SGLANG_LOGGING_CONFIG_PATH} but it does not exist!"
            )
        with open(SGLANG_LOGGING_CONFIG_PATH, encoding="utf-8") as file:
            custom_config = json.loads(file.read())
        logging.config.dictConfig(custom_config)
        return
803
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
804
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
805
806
807
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
808
        datefmt="%Y-%m-%d %H:%M:%S",
809
810
        force=True,
    )
811
812
813
814
815
816
817
818
819
820
821


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
842
843
844


def broadcast_pyobj(
845
846
847
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
848
    src: int = 0,
849
    force_cpu_device: bool = True,
850
851
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""
852
853
854
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not force_cpu_device else "cpu"
    )
855
856
857

    if rank == 0:
        if len(data) == 0:
858
            tensor_size = torch.tensor([0], dtype=torch.long, device=device)
859
            dist.broadcast(tensor_size, src=src, group=dist_group)
860
861
862
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
863

864
865
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
866
867
            ).to(device)
            tensor_size = torch.tensor([size], dtype=torch.long, device=device)
868

869
870
            dist.broadcast(tensor_size, src=src, group=dist_group)
            dist.broadcast(tensor_data, src=src, group=dist_group)
871
872
        return data
    else:
873
        tensor_size = torch.tensor([0], dtype=torch.long, device=device)
874
        dist.broadcast(tensor_size, src=src, group=dist_group)
875
876
877
878
879
        size = tensor_size.item()

        if size == 0:
            return []

880
        tensor_data = torch.empty(size, dtype=torch.uint8, device=device)
881
        dist.broadcast(tensor_data, src=src, group=dist_group)
882

883
        serialized_data = bytes(tensor_data.cpu().numpy())
884
885
        data = pickle.loads(serialized_data)
        return data
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
917
918


Lianmin Zheng's avatar
Lianmin Zheng committed
919
920
921
def get_zmq_socket(
    context: zmq.Context, socket_type: zmq.SocketType, endpoint: str, bind: bool
):
922
923
924
925
926
927
928
929
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

930
    socket = context.socket(socket_type)
931
932

    def set_send_opt():
933
        socket.setsockopt(zmq.SNDHWM, 0)
934
        socket.setsockopt(zmq.SNDBUF, buf_size)
935
936

    def set_recv_opt():
937
        socket.setsockopt(zmq.RCVHWM, 0)
938
        socket.setsockopt(zmq.RCVBUF, buf_size)
939
940
941
942
943
944
945
946

    if socket_type == zmq.PUSH:
        set_send_opt()
    elif socket_type == zmq.PULL:
        set_recv_opt()
    elif socket_type == zmq.DEALER:
        set_send_opt()
        set_recv_opt()
947
948
949
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

Lianmin Zheng's avatar
Lianmin Zheng committed
950
951
952
953
954
    if bind:
        socket.bind(endpoint)
    else:
        socket.connect(endpoint)

955
    return socket
956
957
958


def dump_to_file(dirpath, name, value):
959
    from sglang.srt.distributed import get_tensor_model_parallel_rank
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
    # sglang uses prometheus multiprocess mode
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
1023
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
1033
1034


1035
1036
1037
1038
1039
1040
1041
1042
1043
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
1044
1045
1046
1047
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
1048
            [
HAI's avatar
HAI committed
1049
                "rocminfo | grep 'gfx' -A 100 | grep 'Pool 1' -A 5 | grep 'Size:' | awk '{print $2}'"
1050
            ],
HAI's avatar
HAI committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
1061
            float(mem.split("(")[0].strip()) / 1024
HAI's avatar
HAI committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
            for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


1077
1078
1079
1080
1081
1082
1083
def get_device_sm():
    if torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability()
        return major * 10 + minor
    return 0


HAI's avatar
HAI committed
1084
def get_nvgpu_memory_capacity():
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
1114
1115


1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
def get_hpu_memory_capacity():
    try:
        # Run hl-smi and capture the output
        result = subprocess.run(
            ["hl-smi --query | grep 'Total'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"hl-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem.split(" ")[-2]) for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "hl-smi not found. Ensure Habana drivers are installed and accessible."
        )


1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
# Copy from pytorch and OpenRLHF to allow creating multiple main groups.
# https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py
# https://github.com/OpenRLHF/OpenRLHF/blob/main/openrlhf/utils/distributed_util.py
def init_custom_process_group(
    backend=None,
    init_method=None,
    timeout=None,
    world_size=-1,
    rank=-1,
    store=None,
    group_name=None,
    pg_options=None,
):
    from torch.distributed.distributed_c10d import (
        Backend,
        PrefixStore,
        _new_process_group_helper,
        _world,
        default_pg_timeout,
        rendezvous,
    )

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = default_pg_timeout

    # backward compatible API
    if store is None:
        rendezvous_iterator = rendezvous(init_method, rank, world_size, timeout=timeout)
        store, rank, world_size = next(rendezvous_iterator)
        store.set_timeout(timeout)

        # Use a PrefixStore to avoid accidental overrides of keys used by
        # different systems (e.g. RPC) in case the store is multi-tenant.
        store = PrefixStore(group_name, store)

    # NOTE: The pg_options parameter was renamed into backend_options in PyTorch 2.6.0
    # https://github.com/pytorch/pytorch/commit/a0c7029a75628cd5fa8df83c0de0ea98ee7fd844
    # We need to determine the appropriate parameter name based on PyTorch version
    pg_options_param_name = (
        "backend_options" if str(torch.__version__) >= "2.6" else "pg_options"
    )
    pg, _ = _new_process_group_helper(
        world_size,
        rank,
        [],
        backend,
        store,
        group_name=group_name,
        **{pg_options_param_name: pg_options},
        timeout=timeout,
    )

    _world.pg_group_ranks[pg] = {i: i for i in range(world_size)}

    return pg


1219
1220
def crash_on_warnings():
    # Crash on warning if we are running CI tests
1221
    return get_bool_env_var("SGLANG_IS_IN_CI")
1222
1223


1224
1225
1226
1227
1228
def print_warning_once(msg: str) -> None:
    # Set the stacklevel to 2 to print the caller's line info
    logger.warning(msg, stacklevel=2)


1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
def get_device_name(device_id: int = 0) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_name(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        return torch.xpu.get_device_name(device_id)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return torch.hpu.get_device_name(device_id)


1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
@lru_cache(maxsize=1)
def is_habana_available() -> bool:
    return find_spec("habana_frameworks") is not None


@lru_cache(maxsize=8)
def get_device(device_id: Optional[int] = None) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        if device_id is None:
            return "cuda"
        return "cuda:{}".format(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        if device_id == None:
            return "xpu"
        return "xpu:{}".format(device_id)

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                if device_id == None:
                    return "hpu"
                return "hpu:{}".format(device_id)
        except ImportError as e:
            raise ImportError(
                "Habana frameworks detected, but failed to import 'habana_frameworks.torch.hpu'."
            )

    raise RuntimeError("No accelerator (CUDA, XPU, HPU) is available.")


@lru_cache(maxsize=1)
def get_device_count() -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        try:
            return torch.cuda.device_count()
        except RuntimeError:
            return 0

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        try:
            return torch.xpu.device_count()
        except RuntimeError:
            return 0

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                return torch.hpu.device_count()
        except (ImportError, RuntimeError):
            return 0

    return 0  # No accelerators available


1299
1300
1301
1302
1303
1304
1305
def get_device_core_count(device_id: int = 0) -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_properties(device_id).multi_processor_count

    return 0


1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
    major, minor = None, None
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        major, minor, *_ = torch.xpu.get_device_capability(device_id)["version"].split(
            "."
        )
        major, minor = int(major), int(minor)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        try:
1319
1320
1321
1322
            # TODO(HandH1998): `get_device_capability` is not supported by `torch.hpu` for now.
            # Update this once the support is available.
            # major, minor = torch.hpu.get_device_capability(device_id)
            major, minor = None, None
1323
1324
1325
1326
1327
1328
1329
1330
        except Exception as e:
            raise RuntimeError(
                f"An error occurred while getting device capability of hpu: {e}."
            ) from e

    return major, minor


1331
1332
1333
1334
1335
1336
1337
def get_compiler_backend() -> str:
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return "hpu_backend"

    return "inductor"


1338
1339
1340
sglang_lib = Library("sglang", "FRAGMENT")  # noqa


1341
1342
1343
1344
1345
1346
# Some backends use pytorch version < 2.4.0 which doesn't
# support `torch.library.custom_op`.
def supports_custom_op() -> bool:
    return hasattr(torch.library, "custom_op")


1347
1348
1349
1350
1351
1352
1353
def direct_register_custom_op(
    op_name: str,
    op_func: Callable,
    mutates_args: List[str],
    fake_impl: Optional[Callable] = None,
    target_lib: Optional[Library] = None,
):
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
    """
    `torch.library.custom_op` can have significant overhead because it
    needs to consider complicated dispatching logic. This function
    directly registers a custom op and dispatches it to the CUDA backend.
    See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
    for more details.

    By default, the custom op is registered to the vLLM library. If you
    want to register it to a different library, you can pass the library
    object to the `target_lib` argument.

    IMPORTANT: the lifetime of the operator is tied to the lifetime of the
    library object. If you want to bind the operator to a different library,
    make sure the library object is alive when the operator is used.
    """
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    import torch.library

    if hasattr(torch.library, "infer_schema"):
        schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
    else:
        # for pytorch 2.4
        import torch._custom_op.impl

        schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)

    my_lib = target_lib or sglang_lib
    my_lib.define(op_name + schema_str)
    my_lib.impl(op_name, op_func, "CUDA")
    if fake_impl is not None:
        my_lib._register_fake(op_name, fake_impl)
1384
1385


1386
def set_gpu_proc_affinity(
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
    tp_size: int,
    nnodes: int,
    gpu_id: int,
):
    # current process
    pid = os.getpid()
    p = psutil.Process(pid)

    tp_size_per_node = tp_size // nnodes

    # total physical cores
    total_pcores = psutil.cpu_count(logical=False)
    # physical cores per TP (N.B. more Cores than GPUs on node)
    num_cores_bind = total_pcores // tp_size_per_node

    # able to handle multiple DP per node
    start_cpu_id = (gpu_id * num_cores_bind) % total_pcores
    end_cpu_id = start_cpu_id + num_cores_bind

    if psutil.cpu_count() != psutil.cpu_count(logical=False):
        # HT on
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1408
1409
1410
        lower_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]
        upper_cpu_ids = [id + total_pcores for id in range(start_cpu_id, end_cpu_id)]
        bind_cpu_ids = list(itertools.chain(lower_cpu_ids, upper_cpu_ids))
1411
1412
1413
1414
1415
1416
1417
    else:
        # HT off
        bind_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]

    # set cpu_affinity to current process
    p.cpu_affinity(bind_cpu_ids)
    logger.info(f"Process {pid} gpu_id {gpu_id} is running on CPUs: {p.cpu_affinity()}")
1418
1419


1420
1421
1422
1423
1424
@lru_cache(maxsize=2)
def disable_request_logging() -> bool:
    return get_bool_env_var("SGLANG_DISABLE_REQUEST_LOGGING")


1425
1426
1427
1428
1429
def dataclass_to_string_truncated(
    data, max_length=2048, skip_names: Optional[Set[str]] = None
):
    if skip_names is None:
        skip_names = set()
1430
1431
1432
    if isinstance(data, str):
        if len(data) > max_length:
            half_length = max_length // 2
1433
            return f"{repr(data[:half_length])} ... {repr(data[-half_length:])}"
1434
        else:
1435
            return f"{repr(data)}"
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
    elif isinstance(data, (list, tuple)):
        if len(data) > max_length:
            half_length = max_length // 2
            return str(data[:half_length]) + " ... " + str(data[-half_length:])
        else:
            return str(data)
    elif isinstance(data, dict):
        return (
            "{"
            + ", ".join(
1446
                f"'{k}': {dataclass_to_string_truncated(v, max_length)}"
1447
                for k, v in data.items()
1448
                if k not in skip_names
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
            )
            + "}"
        )
    elif dataclasses.is_dataclass(data):
        fields = dataclasses.fields(data)
        return (
            f"{data.__class__.__name__}("
            + ", ".join(
                f"{f.name}={dataclass_to_string_truncated(getattr(data, f.name), max_length)}"
                for f in fields
1459
                if f.name not in skip_names
1460
1461
1462
            )
            + ")"
        )
1463
    else:
1464
        return str(data)
Tanjiro's avatar
Tanjiro committed
1465
1466


1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
def permute_weight(x: torch.Tensor) -> torch.Tensor:
    b_ = x.shape[0]
    n_ = x.shape[1]
    k_ = x.shape[2]

    x_ = x
    if x.dtype == torch.bfloat16 or x.dtype == torch.float16:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 32), 4, 8)
    elif x.dtype == torch.float8_e4m3fnuz or x.dtype == torch.int8:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 64), 4, 16)
    else:
1478
1479
        # return x_
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 8), 2, 4)
1480
1481
1482
1483
1484
1485
1486

    x_ = x_.permute(0, 1, 3, 4, 2, 5)
    x_ = x_.contiguous()
    x_ = x_.view(*x.shape)
    return x_


1487
1488
class MultiprocessingSerializer:
    @staticmethod
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
    def serialize(obj, output_str: bool = False):
        """
        Serialize a Python object using ForkingPickler.

        Args:
            obj: The object to serialize.
            output_str (bool): If True, return a base64-encoded string instead of raw bytes.

        Returns:
            bytes or str: The serialized object.
        """
1500
1501
1502
        buf = io.BytesIO()
        ForkingPickler(buf).dump(obj)
        buf.seek(0)
1503
1504
1505
1506
1507
1508
1509
        output = buf.read()

        if output_str:
            # Convert bytes to base64-encoded string
            output = base64.b64encode(output).decode("utf-8")

        return output
1510
1511
1512

    @staticmethod
    def deserialize(data):
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
        """
        Deserialize a previously serialized object.

        Args:
            data (bytes or str): The serialized data, optionally base64-encoded.

        Returns:
            The deserialized Python object.
        """
        if isinstance(data, str):
            # Decode base64 string to bytes
            data = base64.b64decode(data)

1526
        return ForkingPickler.loads(data)
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537


def debug_timing(func):
    # todo: replace with a more organized instrumentation
    def wrapper(*args, **kwargs):
        if logger.isEnabledFor(logging.DEBUG):
            tic = torch.cuda.Event(enable_timing=True)
            toc = torch.cuda.Event(enable_timing=True)
            tic.record()
            result = func(*args, **kwargs)
            toc.record()
1538
            toc.synchronize()  # Wait for the function to complete without synchronizing all ops on the GPU
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
            elapsed = tic.elapsed_time(toc)
            indices = kwargs.get("indices", args[1] if len(args) > 1 else None)
            num_tokens = len(indices) if indices is not None else 0
            throughput = num_tokens / elapsed * 1000 if elapsed > 0 else 0
            logger.debug(
                f"Transfer time: {elapsed} ms, throughput: {throughput} tokens/s"
            )
            return result
        else:
            return func(*args, **kwargs)

    return wrapper
bjmsong's avatar
bjmsong committed
1551
1552
1553
1554
1555
1556


def nullable_str(val: str):
    if not val or val == "None":
        return None
    return val
1557
1558


1559
1560
1561
1562
1563
1564
1565
1566
1567
def pyspy_dump_schedulers():
    """py-spy dump on all scheduler in a local node."""
    try:
        pid = psutil.Process().pid
        # Command to run py-spy with the PID
        cmd = f"py-spy dump --pid {pid}"
        result = subprocess.run(
            cmd, shell=True, capture_output=True, text=True, check=True
        )
1568
        logger.error(f"Pyspy dump for PID {pid}:\n{result.stdout}")
1569
    except subprocess.CalledProcessError as e:
1570
        logger.error(f"Pyspy failed to dump PID {pid}. Error: {e.stderr}")
1571
1572
1573
1574
1575
1576
1577
1578
1579


def kill_itself_when_parent_died():
    if sys.platform == "linux":
        # sigkill this process when parent worker manager dies
        PR_SET_PDEATHSIG = 1
        libc = ctypes.CDLL("libc.so.6")
        libc.prctl(PR_SET_PDEATHSIG, signal.SIGKILL)
    else:
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1580
        logger.warning("kill_itself_when_parent_died is only supported in linux.")
1581
1582


1583
def set_uvicorn_logging_configs():
1584
1585
    from uvicorn.config import LOGGING_CONFIG

1586
1587
1588
1589
1590
1591
1592
1593
    LOGGING_CONFIG["formatters"]["default"][
        "fmt"
    ] = "[%(asctime)s] %(levelprefix)s %(message)s"
    LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
    LOGGING_CONFIG["formatters"]["access"][
        "fmt"
    ] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
    LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633


def get_ip() -> str:
    # SGLANG_HOST_IP env can be ignore
    host_ip = os.getenv("SGLANG_HOST_IP", "") or os.getenv("HOST_IP", "")
    if host_ip:
        return host_ip

    # IP is not set, try to get it from the network interface

    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    warnings.warn(
        "Failed to get the IP address, using 0.0.0.0 by default."
        "The value can be set by the environment variable"
        " SGLANG_HOST_IP or HOST_IP.",
        stacklevel=2,
    )
    return "0.0.0.0"


def get_open_port() -> int:
    port = os.getenv("SGLANG_PORT")
    if port is not None:
1634
        port = int(port)
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
        while True:
            try:
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    s.bind(("", port))
                    return port
            except OSError:
                port += 1  # Increment port number if already in use
                logger.info("Port %d is already in use, trying port %d", port - 1, port)
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def is_valid_ipv6_address(address: str) -> bool:
    try:
        ipaddress.IPv6Address(address)
        return True
    except ValueError:
        return False
1661
1662


Vincent's avatar
Vincent committed
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
def configure_ipv6(dist_init_addr):
    addr = dist_init_addr
    end = addr.find("]")
    if end == -1:
        raise ValueError("invalid IPv6 address format: missing ']'")

    host = addr[: end + 1]

    # this only validates the address without brackets: we still need the below checks.
    # if it's invalid, immediately raise an error so we know it's not formatting issues.
    if not is_valid_ipv6_address(host[1:end]):
        raise ValueError(f"invalid IPv6 address: {host}")

    port_str = None
    if len(addr) > end + 1:
        if addr[end + 1] == ":":
            port_str = addr[end + 2 :]
        else:
            raise ValueError("received IPv6 address format: expected ':' after ']'")

    if not port_str:
        raise ValueError(
            "a port must be specified in IPv6 address (format: [ipv6]:port)"
        )

    try:
        port = int(port_str)
    except ValueError:
        raise ValueError(f"invalid port in IPv6 address: '{port_str}'")
    return port, host


1695
1696
1697
1698
1699
def rank0_print(msg: str):
    from sglang.srt.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() == 0:
        print(msg, flush=True)
1700
1701


HandH1998's avatar
HandH1998 committed
1702
1703
1704
1705
1706
1707
def get_cuda_version():
    if torch.version.cuda:
        return tuple(map(int, torch.version.cuda.split(".")))
    return (0, 0)


1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
def launch_dummy_health_check_server(host, port):
    import uvicorn
    from fastapi import FastAPI, Response

    app = FastAPI()

    @app.get("/health")
    async def health():
        """Check the health of the http server."""
        return Response(status_code=200)

    @app.get("/health_generate")
    async def health_generate():
        """Check the health of the http server."""
        return Response(status_code=200)

    uvicorn.run(
        app,
        host=host,
        port=port,
        timeout_keep_alive=5,
        loop="uvloop",
    )
1731
1732


1733
1734
1735
1736
def create_checksum(directory: str):
    raise NotImplementedError()


1737
1738
1739
1740
1741
def set_cuda_arch():
    if is_flashinfer_available():
        capability = torch.cuda.get_device_capability()
        arch = f"{capability[0]}.{capability[1]}"
        os.environ["TORCH_CUDA_ARCH_LIST"] = f"{arch}{'+PTX' if arch == '9.0' else ''}"
1742
1743


Lianmin Zheng's avatar
Lianmin Zheng committed
1744
1745
1746
1747
1748
1749
1750
def next_power_of_2(n: int):
    return 1 << (n - 1).bit_length() if n > 0 else 1


setattr(triton, "next_power_of_2", next_power_of_2)


1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
@contextmanager
def empty_context(*args, **kwargs):
    try:
        # Setup code goes here
        yield
    finally:
        # Cleanup code goes here
        pass


1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
def add_prefix(name: str, prefix: str) -> str:
    """Add a weight path prefix to a module name.

    Args:
        name: base module name.
        prefix: weight prefix str to added to the front of `name` concatenated with `.`.

    Returns:
        The string `prefix.name` if prefix is non-empty, otherwise just `name`.
    """
    return name if not prefix else f"{prefix}.{name}"
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797


def is_remote_url(url: Union[str, Path]) -> bool:
    """
    Check if the URL is a remote URL of the format:
    <connector_type>://<host>:<port>/<model_name>
    """
    if isinstance(url, Path):
        return False

    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    return m is not None


def parse_connector_type(url: str) -> str:
    """
    Parse the connector type from the URL of the format:
    <connector_type>://<path>
    """
    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    if m is None:
        return ""

    return m.group(1)
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826


def retry(
    fn,
    max_retry: int,
    initial_delay: float = 2.0,
    max_delay: float = 60.0,
    should_retry: Callable[[Any], bool] = lambda e: True,
):
    for try_index in itertools.count():
        try:
            return fn()
        except Exception as e:
            if try_index >= max_retry:
                raise Exception(f"retry() exceed maximum number of retries.")

            if not should_retry(e):
                raise Exception(f"retry() observe errors that should not be retried.")

            delay = min(initial_delay * (2**try_index), max_delay) * (
                0.75 + 0.25 * random.random()
            )

            logger.warning(
                f"retry() failed once ({try_index}th try, maximum {max_retry} retries). Will delay {delay:.2f}s and retry. Error: {e}"
            )
            traceback.print_exc()

            time.sleep(delay)
Mick's avatar
Mick committed
1827
1828
1829
1830
1831
1832
1833
1834
1835


def flatten_nested_list(nested_list):
    if isinstance(nested_list, list):
        return [
            item for sublist in nested_list for item in flatten_nested_list(sublist)
        ]
    else:
        return [nested_list]
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856


class DeepEPMode(Enum):
    normal = "normal"
    low_latency = "low_latency"
    auto = "auto"

    def enable_normal(self):
        return self in [DeepEPMode.normal, DeepEPMode.auto]

    def enable_low_latency(self):
        return self in [DeepEPMode.low_latency, DeepEPMode.auto]

    def resolve(self, forward_mode):
        if self != DeepEPMode.auto:
            return self

        if forward_mode.is_decode():
            return DeepEPMode.low_latency
        else:
            return DeepEPMode.normal
1857
1858
1859
1860
1861
1862
1863
1864
1865


def fast_topk(values, topk, dim):
    if topk == 1:
        # Use max along the specified dimension to get both value and index
        return torch.max(values, dim=dim, keepdim=True)
    else:
        # Use topk for efficiency with larger k values
        return torch.topk(values, topk, dim=dim)
1866
1867
1868
1869
1870
1871
1872
1873
1874


def is_hopper_with_cuda_12_3():
    if not is_cuda():
        return False
    is_hopper = torch.cuda.get_device_capability()[0] == 9
    cuda_version = torch.version.cuda.split(".")
    is_cuda_compatible = int(cuda_version[0]) == 12 and int(cuda_version[1]) >= 3
    return is_hopper and is_cuda_compatible
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907


def get_free_port():
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def get_local_ip_by_remote() -> str:
    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        raise ValueError(f"Can not get local ip")